Preface |
|
xi | |
How to Get the Software |
|
xiii | |
1 Introduction |
|
1 | (26) |
|
|
1 | (1) |
|
|
1 | (1) |
|
|
2 | (3) |
|
1.2.1 Local Convergence Theory |
|
|
3 | (2) |
|
1.3 Approximating the Jacobian |
|
|
5 | (2) |
|
1.4 Inexact Newton Methods |
|
|
7 | (2) |
|
1.5 Termination of the Iteration |
|
|
9 | (2) |
|
1.6 Global Convergence and the Armijo Rule |
|
|
11 | (1) |
|
|
12 | (3) |
|
|
14 | (1) |
|
|
15 | (2) |
|
1.8.1 Human Time and Public Domain Codes |
|
|
15 | (1) |
|
1.8.2 The Initial Iterate |
|
|
15 | (1) |
|
1.8.3 Computing the Newton Step |
|
|
16 | (1) |
|
|
16 | (1) |
|
|
17 | (3) |
|
1.9.1 Nonsmooth Functions |
|
|
17 | (1) |
|
1.9.2 Failure to Converge |
|
|
18 | (1) |
|
1.9.3 Failure of the Line Search |
|
|
19 | (1) |
|
|
19 | (1) |
|
|
20 | (1) |
|
|
20 | (1) |
|
1.10 Three Codes for Scalar Equations |
|
|
20 | (4) |
|
|
21 | (1) |
|
|
21 | (1) |
|
|
22 | (1) |
|
|
23 | (1) |
|
|
24 | (3) |
|
1.11.1 Estimating the q-order |
|
|
24 | (1) |
|
|
25 | (2) |
2 Finding the Newton Step with Gaussian Elimination |
|
27 | (30) |
|
2.1 Direct Methods for Solving Linear Equations |
|
|
27 | (1) |
|
2.2 The Newton-Armijo Iteration |
|
|
28 | (1) |
|
2.3 Computing a Finite Difference Jacobian |
|
|
29 | (4) |
|
2.4 The Chord and Shamanskii Methods |
|
|
33 | (1) |
|
|
34 | (1) |
|
|
34 | (1) |
|
2.5.2 Finite Difference Jacobian Error |
|
|
35 | (1) |
|
|
35 | (1) |
|
|
35 | (2) |
|
|
36 | (1) |
|
2.6.2 Output from nsold.m |
|
|
37 | (1) |
|
|
37 | (13) |
|
2.7.1 Arctangent Function |
|
|
38 | (1) |
|
2.7.2 A Simple Two-Dimensional Example |
|
|
39 | (2) |
|
2.7.3 Chandrasekhar H-equation |
|
|
41 | (2) |
|
2.7.4 A Two-Point Boundary Value Problem |
|
|
43 | (4) |
|
2.7.5 Stiff Initial Value Problems |
|
|
47 | (3) |
|
|
50 | (1) |
|
2.8.1 Chandrasekhar H-equation |
|
|
58 | |
|
|
50 | (1) |
|
2.9 Source Code for nsold.m |
|
|
51 | (6) |
3 Methods |
|
57 | (23) |
|
3.1 Krylov Methods for Solving Linear Equations |
|
|
57 | (4) |
|
|
58 | |
|
3.1.2 Low-Storage Krylov Methods |
|
|
50 | (10) |
|
|
60 | (1) |
|
3.2 Computing an Approximate Newton Step |
|
|
61 | (2) |
|
|
61 | (1) |
|
3.2.2 Preconditioning Nonlinear Equations |
|
|
61 | (1) |
|
3.2.3 Choosing the Forcing Term |
|
|
62 | (1) |
|
|
63 | (1) |
|
|
64 | (1) |
|
3.4.1 Failure of the Inner Iteration |
|
|
64 | (1) |
|
3.4.2 Loss of Orthogonality |
|
|
64 | (1) |
|
|
65 | (1) |
|
|
65 | (1) |
|
3.5.2 Output from nsoli.m |
|
|
65 | (1) |
|
|
66 | (8) |
|
3.6.1 Chandrasekhar H-equation |
|
|
66 | (1) |
|
3.6.2 The Ornstein-Zernike Equations |
|
|
67 | (4) |
|
|
71 | (2) |
|
3.6.4 Time-Dependent Convection-Diffusion Equation |
|
|
73 | (1) |
|
|
74 | (2) |
|
3.7.1 Krylov Methods and the Forcing Term |
|
|
74 | (1) |
|
3.7.2 Left and Right Preconditioning |
|
|
74 | (1) |
|
3.7.3 Two-Point Boundary Value Problem |
|
|
74 | (1) |
|
|
75 | (1) |
|
3.8 Source Code for nsoli.m |
|
|
76 | (4) |
4 Broyden's Method |
|
80 | (17) |
|
|
86 | (1) |
|
4.2 An Algorithmic Sketch |
|
|
86 | (1) |
|
4.3 Computing the Broyden Computing Step and Update |
|
|
87 | (2) |
|
|
89 | (1) |
|
4.4.1 Failure of the Line Search |
|
|
89 | (1) |
|
4.4.2 Failure to Converge |
|
|
89 | (1) |
|
|
89 | (1) |
|
|
90 | (1) |
|
4.5.2 Output from brsola.m |
|
|
90 | (1) |
|
|
90 | (3) |
|
4.6.1 Chandrasekhar H-equation |
|
|
91 | (1) |
|
4.6.2 Convection-Diffusion Equation |
|
|
91 | (2) |
|
4.7 Source Code for brsola.m |
|
|
93 | (4) |
Bibliography |
|
97 | (6) |
Index |
|
103 | |