Atjaunināt sīkdatņu piekrišanu

E-grāmata: Solving Optimization Problems with the Heuristic Kalman Algorithm: New Stochastic Methods

Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 142,75 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This text focuses on simple and easy-to-use design strategies for solving complex engineering problems that arise in several fields of engineering design, namely non-convex optimization problems. 

The main optimization tool used in this book to tackle the problem of nonconvexity is the Heuristic Kalman Algorithm (HKA). The main characteristic of HKA is the use of a stochastic search mechanism to solve a given optimization problem. From a computational point of view, the use of a stochastic search procedure appears essential for dealing with non-convex problems.

The topics discussed in this monograph include basic definitions and concepts from the classical optimization theory, the notion of the acceptable solution, machine learning, the concept of preventive maintenance, and more. 

The Heuristic Kalman Algorithm discussed in this book applies to many fields such as robust structured control, electrical engineering, mechanical engineering, machine learning, reliability, and preference models. This large coverage of practical optimization problems makes this text very useful to those working on and researching systems design. The intended audience includes industrial engineers, postgraduates, and final-year undergraduates in various fields of systems design. 

1 Introduction.- 2 Stochastic Optimization Methods.- 3 Heuristic Kalman
Algorithm.- 4 Some Notions on System Modeling.- 5 Robust Control of Uncertain
Parametric Systems.- 6 Preventive Maintenance.- 7 Machine Learning.- 8
Conclusion.- A Signal and System Norms.- B Convergence Properties of the HKA
and Program Code.- References.- Index.
Rosario Toscano was born in Catania, Italy. He received his masters degree with specialization in control from the Institut National des Sciences Appliquées de Lyon in 1996. He received the Ph.D. degree from the Ecole Centrale de Lyon in 2000. He received the HDR degree (Habilitation to Direct Research) from the University Jean Monnet of Saint-Etienne in 2007. He is currently full professor at the Ecole Nationale d'Ingénieurs de Saint-Etienne and Ecole Centrale de Lyon (ENISE-ECL). His research interests include: structured controllers, robust control, stochastic optimization methods, dynamic reliability, fault detection, multimodel approach applied to diagnosis and control, fretting wear of mechanical surfaces and sensorial design of products.