Atjaunināt sīkdatņu piekrišanu

Space Flight Dynamics 2nd edition [Hardback]

Series edited by (University of Liverpool, UK), Series edited by (MIT), Series edited by (BAE Systems, UK), (University of Missouri-Columbia, USA)
  • Formāts: Hardback, 592 pages, height x width x depth: 246x175x36 mm, weight: 1111 g
  • Sērija : Aerospace Series
  • Izdošanas datums: 30-Mar-2018
  • Izdevniecība: John Wiley & Sons Inc
  • ISBN-10: 111915782X
  • ISBN-13: 9781119157823
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 113,17 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 592 pages, height x width x depth: 246x175x36 mm, weight: 1111 g
  • Sērija : Aerospace Series
  • Izdošanas datums: 30-Mar-2018
  • Izdevniecība: John Wiley & Sons Inc
  • ISBN-10: 111915782X
  • ISBN-13: 9781119157823
Citas grāmatas par šo tēmu:

Thorough coverage of space flight topics with self-contained chapters serving a variety of courses in orbital mechanics, spacecraft dynamics, and astronautics

This concise yet comprehensive book on space flight dynamics addresses all phases of a space mission: getting to space (launch trajectories), satellite motion in space (orbital motion, orbit transfers, attitude dynamics), and returning from space (entry flight mechanics). It focuses on orbital mechanics with emphasis on two-body motion, orbit determination, and orbital maneuvers with applications in Earth-centered missions and interplanetary missions.

Space Flight Dynamics presents wide-ranging information on a host of topics not always covered in competing books. It discusses relative motion, entry flight mechanics, low-thrust transfers, rocket propulsion fundamentals, attitude dynamics, and attitude control. The book is filled with illustrated concepts and real-world examples drawn from the space industry. Additionally, the book includes a “computational toolbox” composed of MATLAB M-files for performing space mission analysis.

Key features:

  • Provides practical, real-world examples illustrating key concepts throughout the book
  • Accompanied by a website containing MATLAB M-files for conducting space mission analysis
  • Presents numerous space flight topics absent in competing titles

Space Flight Dynamics is a welcome addition to the field, ideally suited for upper-level undergraduate and graduate students studying aerospace engineering.

Series Preface xi
Preface xiii
About the Companion Website xvii
1 Historical Overview 1(6)
1.1 Introduction
1(1)
1.2 Early Modern Period
1(2)
1.3 Early Twentieth Century
3(1)
1.4 Space Age
4(3)
2 Two-Body Orbital Mechanics 7(48)
2.1 Introduction
7(1)
2.2 Two-Body Problem
7(4)
2.3 Constants of Motion
11(4)
2.3.1 Conservation of Angular Momentum
11(2)
2.3.2 Conservation of Energy
13(2)
2.4 Conic Sections
15(8)
2.4.1 Trajectory Equation
15(5)
2.4.2 Eccentricity Vector
20(1)
2.4.3 Energy and Semimajor Axis
21(2)
2.5 Elliptical Orbit
23(15)
2.5.1 Ellipse Geometry
24(1)
2.5.2 Flight-Path Angle and Velocity Components
24(7)
2.5.3 Period of an Elliptical Orbit
31(1)
2.5.4 Circular Orbit
32(1)
2.5.5 Geocentric Orbits
33(5)
2.6 Parabolic Trajectory
38(4)
2.7 Hyperbolic Trajectory
42(4)
2.8 Summary
46(1)
Further Reading
46(1)
Problems
47(8)
3 Orbit Determination 55(52)
3.1 Introduction
55(1)
3.2 Coordinate Systems
55(2)
3.3 Classical Orbital Elements
57(3)
3.4 Transforming Cartesian Coordinates to Orbital Elements
60(6)
3.5 Transforming Orbital Elements to Cartesian Coordinates
66(9)
3.5.1 Coordinate Transformations
68(7)
3.6 Ground Tracks
75(4)
3.7 Orbit Determination from One Ground-Based Observation
79(9)
3.7.1 Topocentric-Horizon Coordinate System
79(2)
3.7.2 Inertial Position Vector
81(1)
3.7.3 Inertial Velocity Vector
82(3)
3.7.4 Ellipsoidal Earth Model
85(3)
3.8 Orbit Determination from Three Position Vectors
88(7)
3.9 Survey of Orbit-Determination Methods
95(4)
3.9.1 Orbit Determination Using Angles-Only Measurements
95(2)
3.9.2 Orbit Determination Using Three Position Vectors
97(1)
3.9.3 Orbit Determination from Two Position Vectors and Time
97(1)
3.9.4 Statistical Orbit Determination
98(1)
3.10 Summary
99(1)
References
100(1)
Problems
100(7)
4 Time of Flight 107(44)
4.1 Introduction
107(1)
4.2 Kepler's Equation
107(10)
4.2.1 Time of Flight Using Geometric Methods
107(1)
4.2.2 Time of Flight Using Analytical Methods
108(4)
4.2.3 Relating Eccentric and True Anomalies
112(5)
4.3 Parabolic and Hyperbolic Time of Flight
117(6)
4.3.1 Parabolic Trajectory Flight Time
117(2)
4.3.2 Hyperbolic Trajectory Flight Time
119(4)
4.4 Kepler's Problem
123(4)
4.5 Orbit Propagation Using Lagrangian Coefficients
127(8)
4.6 Lambert's Problem
135(10)
4.7 Summary
145(1)
References
145(1)
Problems
146(5)
5 Non-Keplerian Motion 151(62)
5.1 Introduction
151(1)
5.2 Special Perturbation Methods
152(7)
5.2.1 Non-Spherical Central Body
153(6)
5.3 General Perturbation Methods
159(15)
5.3.1 Lagrange's Variation of Parameters
160(4)
5.3.2 Secular Perturbations due to Oblateness (h)
164(10)
5.4 Gauss' Variation of Parameters
174(6)
5.5 Perturbation Accelerations for Earth Satellites
180(12)
5.5.1 Non-Spherical Earth
180(2)
5.5.2 Third-Body Gravity
182(3)
5.5.3 Atmospheric Drag
185(4)
5.5.4 Solar Radiation Pressure
189(3)
5.6 Circular Restricted Three-Body Problem
192(11)
5.6.1 Jacobi's Integral
194(1)
5.6.2 Lagrangian Points
195(8)
5.7 Summary
203(1)
References
203(1)
Problems
204(9)
6 Rocket Performance 213(28)
6.1 Introduction
213(1)
6.2 Rocket Propulsion Fundamentals
213(1)
6.3 The Rocket Equation
214(5)
6.4 Launch Trajectories
219(8)
6.5 Staging
227(4)
6.6 Launch Vehicle Performance
231(2)
6.7 Impulsive Maneuvers
233(1)
6.8 Summary
234(1)
References
235(1)
Problems
235(6)
7 Impulsive Orbital Maneuvers 241(34)
7.1 Introduction
241(1)
7.2 Orbit Shaping
242(3)
7.3 Hohmann Transfer
245(7)
7.3.1 Coplanar Transfer with Tangential Impulses
248(4)
7.4 General Coplanar Transfer
252(4)
7.5 Inclination-Change Maneuver
256(3)
7.6 Three-Dimensional Orbit Transfer
259(5)
7.7 Summary
264(1)
References
264(1)
Problems
264(11)
8 Relative Motion and Orbital Rendezvous 275(28)
8.1 Introduction
275(1)
8.2 Linear Clohessy-Wiltshire Equations
275(5)
8.3 Homogeneous Solution of the Clohessy-Wiltshire Equations
280(8)
8.4 Orbital Rendezvous Using the Clohessy-Wiltshire Equations
288(10)
8.5 Summary
298(1)
References
298(1)
Problems
298(5)
9 Low-Thrust Transfers 303(32)
9.1 Introduction
303(1)
9.2 Electric Propulsion Fundamentals
304(2)
9.3 Coplanar Circle-to-Circle Transfer
306(9)
9.3.1 Comparing Impulsive and Low-Thrust Transfers
313(2)
9.4 Coplanar Transfer with Earth-Shadow Effects
315(3)
9.5 Inclination-Change Maneuver
318(2)
9.6 Transfer Between Inclined Circular Orbits
320(2)
9.7 Combined Chemical-Electric Propulsion Transfer
322(6)
9.8 Low-Thrust Transfer Issues
328(1)
9.9 Summary
329(1)
References
329(1)
Problems
330(5)
10 Interplanetary Trajectories 335(50)
10.1 Introduction
335(3)
10.2 Patched-Conic Method
338(13)
10.2.1 Sphere of Influence
339(2)
10.2.2 Coplanar Heliocentric Transfers between Circular Orbits
341(10)
10.3 Phase Angle at Departure
351(4)
10.4 Planetary Arrival
355(4)
10.5 Heliocentric Transfers Using an Accurate Ephemeris
359(11)
10.5.1 Pork-Chop Plots
367(1)
10.5.2 Julian Date
368(2)
10.6 Gravity Assists
370(8)
10.7 Summary
378(1)
References
379(1)
Problems
379(6)
11 Atmospheric Entry 385(44)
11.1 Introduction
385(1)
11.2 Entry Flight Mechanics
386(4)
11.3 Ballistic Entry
390(14)
11.4 Gliding Entry 3%
11.5 Skip Entry
404(8)
11.6 Entry Heating
412(6)
11.7 Space Shuttle Entry
418(4)
11.8 Summary
422(1)
References
423(1)
Problems
423(6)
12 Attitude Dynamics 429(56)
12.1 Introduction
429(1)
12.2 Rigid Body Dynamics
430(12)
12.2.1 Angular Momentum of a Rigid Body
432(6)
12.2.2 Principal Axes
438(1)
12.2.3 Rotational Kinetic Energy
439(2)
12.2.4 Euler's Moment Equations
441(1)
12.3 Torque-Free Motion
442(15)
12.3.1 Euler Angle Rates
447(10)
12.4 Stability and Flexible Bodies
457(7)
12.4.1 Spin Stability about the Principal Axes
457(2)
12.4.2 Stability of Flexible Bodies
459(5)
12.5 Spin Stabilization
464(3)
12.5.1 Dual-Spin Stabilization
466(1)
12.6 Disturbance Torques
467(3)
12.6.1 Gravity-Gradient Torque
467(1)
12.6.2 Aerodynamic Torque
468(1)
12.6.3 Solar Radiation Pressure Torque
469(1)
12.6.4 Magnetic Torque
470(1)
12.7 Gravity-Gradient Stabilization
470(6)
12.8 Summary
476(1)
References
477(1)
Problems
477(8)
13 Attitude Control 485(56)
13.1 Introduction
485(1)
13.2 Feedback Control Systems
485(12)
13.2.1 Transfer Functions
486(3)
13.2.2 Closed-Loop Control Systems
489(1)
13.2.3 Second-Order System Response
490(7)
13.3 Mechanisms for Attitude Control
497(4)
13.3.1 Reaction Jets
497(1)
13.3.2 Momentum-Exchange Devices
497(4)
13.3.3 Magnetic Torquers
501(1)
13.4 Attitude Maneuvers Using Reaction Wheels
501(12)
13.5 Attitude Maneuvers Using Reaction Jets
513(14)
13.5.1 Phase-Plane Analysis of Satellite Attitude Dynamics
513(5)
13.5.2 Reaction Jet Control Law
518(9)
13.6 Nutation Control Using Reaction Jets
527(7)
13.7 Summary
534(1)
References
535(1)
Further Reading
535(1)
Problems
535(6)
Appendix A: Physical Constants 541(2)
Appendix B: Review of Vectors 543(6)
B.1 Introduction
543(1)
B.2 Vectors
543(1)
B.3 Vector Operations
544(5)
B.3.1 Vector Addition
544(1)
B.3.2 Cross Product
545(1)
B.3.3 Dot Product
546(1)
B.3.4 Scalar Triple Product
547(1)
B.3.5 Vector Triple Product
547(2)
Appendix C: Review of Particle Kinematics 549(6)
C.1 Introduction
549(1)
C.2 Cartesian Coordinates
549(2)
C.3 Polar Coordinates
551(1)
C.4 Normal-Tangential Coordinates
552(3)
Index 555
Craig A. Kluever is C. W. LaPierre Professor of Mechanical and Aerospace Engineering, University of Missouri-Columbia, USA. He has industry experience as an aerospace engineer on the Space Shuttle program and has performed extensive research at the University of Missouri in collaboration with NASA involving trajectory optimization, space mission design, entry flight mechanics, and guidance and control of aerospace vehicles.