Series Preface |
|
xi | |
Preface |
|
xiii | |
About the Companion Website |
|
xvii | |
1 Historical Overview |
|
1 | (6) |
|
|
1 | (1) |
|
|
1 | (2) |
|
1.3 Early Twentieth Century |
|
|
3 | (1) |
|
|
4 | (3) |
2 Two-Body Orbital Mechanics |
|
7 | (48) |
|
|
7 | (1) |
|
|
7 | (4) |
|
|
11 | (4) |
|
2.3.1 Conservation of Angular Momentum |
|
|
11 | (2) |
|
2.3.2 Conservation of Energy |
|
|
13 | (2) |
|
|
15 | (8) |
|
2.4.1 Trajectory Equation |
|
|
15 | (5) |
|
2.4.2 Eccentricity Vector |
|
|
20 | (1) |
|
2.4.3 Energy and Semimajor Axis |
|
|
21 | (2) |
|
|
23 | (15) |
|
|
24 | (1) |
|
2.5.2 Flight-Path Angle and Velocity Components |
|
|
24 | (7) |
|
2.5.3 Period of an Elliptical Orbit |
|
|
31 | (1) |
|
|
32 | (1) |
|
|
33 | (5) |
|
|
38 | (4) |
|
2.7 Hyperbolic Trajectory |
|
|
42 | (4) |
|
|
46 | (1) |
|
|
46 | (1) |
|
|
47 | (8) |
3 Orbit Determination |
|
55 | (52) |
|
|
55 | (1) |
|
|
55 | (2) |
|
3.3 Classical Orbital Elements |
|
|
57 | (3) |
|
3.4 Transforming Cartesian Coordinates to Orbital Elements |
|
|
60 | (6) |
|
3.5 Transforming Orbital Elements to Cartesian Coordinates |
|
|
66 | (9) |
|
3.5.1 Coordinate Transformations |
|
|
68 | (7) |
|
|
75 | (4) |
|
3.7 Orbit Determination from One Ground-Based Observation |
|
|
79 | (9) |
|
3.7.1 Topocentric-Horizon Coordinate System |
|
|
79 | (2) |
|
3.7.2 Inertial Position Vector |
|
|
81 | (1) |
|
3.7.3 Inertial Velocity Vector |
|
|
82 | (3) |
|
3.7.4 Ellipsoidal Earth Model |
|
|
85 | (3) |
|
3.8 Orbit Determination from Three Position Vectors |
|
|
88 | (7) |
|
3.9 Survey of Orbit-Determination Methods |
|
|
95 | (4) |
|
3.9.1 Orbit Determination Using Angles-Only Measurements |
|
|
95 | (2) |
|
3.9.2 Orbit Determination Using Three Position Vectors |
|
|
97 | (1) |
|
3.9.3 Orbit Determination from Two Position Vectors and Time |
|
|
97 | (1) |
|
3.9.4 Statistical Orbit Determination |
|
|
98 | (1) |
|
|
99 | (1) |
|
|
100 | (1) |
|
|
100 | (7) |
4 Time of Flight |
|
107 | (44) |
|
|
107 | (1) |
|
|
107 | (10) |
|
4.2.1 Time of Flight Using Geometric Methods |
|
|
107 | (1) |
|
4.2.2 Time of Flight Using Analytical Methods |
|
|
108 | (4) |
|
4.2.3 Relating Eccentric and True Anomalies |
|
|
112 | (5) |
|
4.3 Parabolic and Hyperbolic Time of Flight |
|
|
117 | (6) |
|
4.3.1 Parabolic Trajectory Flight Time |
|
|
117 | (2) |
|
4.3.2 Hyperbolic Trajectory Flight Time |
|
|
119 | (4) |
|
|
123 | (4) |
|
4.5 Orbit Propagation Using Lagrangian Coefficients |
|
|
127 | (8) |
|
|
135 | (10) |
|
|
145 | (1) |
|
|
145 | (1) |
|
|
146 | (5) |
5 Non-Keplerian Motion |
|
151 | (62) |
|
|
151 | (1) |
|
5.2 Special Perturbation Methods |
|
|
152 | (7) |
|
5.2.1 Non-Spherical Central Body |
|
|
153 | (6) |
|
5.3 General Perturbation Methods |
|
|
159 | (15) |
|
5.3.1 Lagrange's Variation of Parameters |
|
|
160 | (4) |
|
5.3.2 Secular Perturbations due to Oblateness (h) |
|
|
164 | (10) |
|
5.4 Gauss' Variation of Parameters |
|
|
174 | (6) |
|
5.5 Perturbation Accelerations for Earth Satellites |
|
|
180 | (12) |
|
5.5.1 Non-Spherical Earth |
|
|
180 | (2) |
|
|
182 | (3) |
|
|
185 | (4) |
|
5.5.4 Solar Radiation Pressure |
|
|
189 | (3) |
|
5.6 Circular Restricted Three-Body Problem |
|
|
192 | (11) |
|
|
194 | (1) |
|
|
195 | (8) |
|
|
203 | (1) |
|
|
203 | (1) |
|
|
204 | (9) |
6 Rocket Performance |
|
213 | (28) |
|
|
213 | (1) |
|
6.2 Rocket Propulsion Fundamentals |
|
|
213 | (1) |
|
|
214 | (5) |
|
|
219 | (8) |
|
|
227 | (4) |
|
6.6 Launch Vehicle Performance |
|
|
231 | (2) |
|
|
233 | (1) |
|
|
234 | (1) |
|
|
235 | (1) |
|
|
235 | (6) |
7 Impulsive Orbital Maneuvers |
|
241 | (34) |
|
|
241 | (1) |
|
|
242 | (3) |
|
|
245 | (7) |
|
7.3.1 Coplanar Transfer with Tangential Impulses |
|
|
248 | (4) |
|
7.4 General Coplanar Transfer |
|
|
252 | (4) |
|
7.5 Inclination-Change Maneuver |
|
|
256 | (3) |
|
7.6 Three-Dimensional Orbit Transfer |
|
|
259 | (5) |
|
|
264 | (1) |
|
|
264 | (1) |
|
|
264 | (11) |
8 Relative Motion and Orbital Rendezvous |
|
275 | (28) |
|
|
275 | (1) |
|
8.2 Linear Clohessy-Wiltshire Equations |
|
|
275 | (5) |
|
8.3 Homogeneous Solution of the Clohessy-Wiltshire Equations |
|
|
280 | (8) |
|
8.4 Orbital Rendezvous Using the Clohessy-Wiltshire Equations |
|
|
288 | (10) |
|
|
298 | (1) |
|
|
298 | (1) |
|
|
298 | (5) |
9 Low-Thrust Transfers |
|
303 | (32) |
|
|
303 | (1) |
|
9.2 Electric Propulsion Fundamentals |
|
|
304 | (2) |
|
9.3 Coplanar Circle-to-Circle Transfer |
|
|
306 | (9) |
|
9.3.1 Comparing Impulsive and Low-Thrust Transfers |
|
|
313 | (2) |
|
9.4 Coplanar Transfer with Earth-Shadow Effects |
|
|
315 | (3) |
|
9.5 Inclination-Change Maneuver |
|
|
318 | (2) |
|
9.6 Transfer Between Inclined Circular Orbits |
|
|
320 | (2) |
|
9.7 Combined Chemical-Electric Propulsion Transfer |
|
|
322 | (6) |
|
9.8 Low-Thrust Transfer Issues |
|
|
328 | (1) |
|
|
329 | (1) |
|
|
329 | (1) |
|
|
330 | (5) |
10 Interplanetary Trajectories |
|
335 | (50) |
|
|
335 | (3) |
|
10.2 Patched-Conic Method |
|
|
338 | (13) |
|
10.2.1 Sphere of Influence |
|
|
339 | (2) |
|
10.2.2 Coplanar Heliocentric Transfers between Circular Orbits |
|
|
341 | (10) |
|
10.3 Phase Angle at Departure |
|
|
351 | (4) |
|
|
355 | (4) |
|
10.5 Heliocentric Transfers Using an Accurate Ephemeris |
|
|
359 | (11) |
|
|
367 | (1) |
|
|
368 | (2) |
|
|
370 | (8) |
|
|
378 | (1) |
|
|
379 | (1) |
|
|
379 | (6) |
11 Atmospheric Entry |
|
385 | (44) |
|
|
385 | (1) |
|
11.2 Entry Flight Mechanics |
|
|
386 | (4) |
|
|
390 | (14) |
|
|
|
|
404 | (8) |
|
|
412 | (6) |
|
|
418 | (4) |
|
|
422 | (1) |
|
|
423 | (1) |
|
|
423 | (6) |
12 Attitude Dynamics |
|
429 | (56) |
|
|
429 | (1) |
|
|
430 | (12) |
|
12.2.1 Angular Momentum of a Rigid Body |
|
|
432 | (6) |
|
|
438 | (1) |
|
12.2.3 Rotational Kinetic Energy |
|
|
439 | (2) |
|
12.2.4 Euler's Moment Equations |
|
|
441 | (1) |
|
|
442 | (15) |
|
|
447 | (10) |
|
12.4 Stability and Flexible Bodies |
|
|
457 | (7) |
|
12.4.1 Spin Stability about the Principal Axes |
|
|
457 | (2) |
|
12.4.2 Stability of Flexible Bodies |
|
|
459 | (5) |
|
|
464 | (3) |
|
12.5.1 Dual-Spin Stabilization |
|
|
466 | (1) |
|
|
467 | (3) |
|
12.6.1 Gravity-Gradient Torque |
|
|
467 | (1) |
|
12.6.2 Aerodynamic Torque |
|
|
468 | (1) |
|
12.6.3 Solar Radiation Pressure Torque |
|
|
469 | (1) |
|
|
470 | (1) |
|
12.7 Gravity-Gradient Stabilization |
|
|
470 | (6) |
|
|
476 | (1) |
|
|
477 | (1) |
|
|
477 | (8) |
13 Attitude Control |
|
485 | (56) |
|
|
485 | (1) |
|
13.2 Feedback Control Systems |
|
|
485 | (12) |
|
13.2.1 Transfer Functions |
|
|
486 | (3) |
|
13.2.2 Closed-Loop Control Systems |
|
|
489 | (1) |
|
13.2.3 Second-Order System Response |
|
|
490 | (7) |
|
13.3 Mechanisms for Attitude Control |
|
|
497 | (4) |
|
|
497 | (1) |
|
13.3.2 Momentum-Exchange Devices |
|
|
497 | (4) |
|
|
501 | (1) |
|
13.4 Attitude Maneuvers Using Reaction Wheels |
|
|
501 | (12) |
|
13.5 Attitude Maneuvers Using Reaction Jets |
|
|
513 | (14) |
|
13.5.1 Phase-Plane Analysis of Satellite Attitude Dynamics |
|
|
513 | (5) |
|
13.5.2 Reaction Jet Control Law |
|
|
518 | (9) |
|
13.6 Nutation Control Using Reaction Jets |
|
|
527 | (7) |
|
|
534 | (1) |
|
|
535 | (1) |
|
|
535 | (1) |
|
|
535 | (6) |
Appendix A: Physical Constants |
|
541 | (2) |
Appendix B: Review of Vectors |
|
543 | (6) |
|
|
543 | (1) |
|
|
543 | (1) |
|
|
544 | (5) |
|
|
544 | (1) |
|
|
545 | (1) |
|
|
546 | (1) |
|
B.3.4 Scalar Triple Product |
|
|
547 | (1) |
|
B.3.5 Vector Triple Product |
|
|
547 | (2) |
Appendix C: Review of Particle Kinematics |
|
549 | (6) |
|
|
549 | (1) |
|
C.2 Cartesian Coordinates |
|
|
549 | (2) |
|
|
551 | (1) |
|
C.4 Normal-Tangential Coordinates |
|
|
552 | (3) |
Index |
|
555 | |