Atjaunināt sīkdatņu piekrišanu

Space Weather Monitoring by Ground-Based Means: PC Index 2012 ed. [Hardback]

  • Formāts: Hardback, 288 pages, height x width: 240x168 mm, weight: 702 g, XXIV, 288 p., 1 Hardback
  • Sērija : Springer Praxis Books
  • Izdošanas datums: 08-Mar-2012
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642168027
  • ISBN-13: 9783642168024
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 180,78 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 212,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 288 pages, height x width: 240x168 mm, weight: 702 g, XXIV, 288 p., 1 Hardback
  • Sērija : Springer Praxis Books
  • Izdošanas datums: 08-Mar-2012
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642168027
  • ISBN-13: 9783642168024
Citas grāmatas par šo tēmu:

This book demonstrates that the method, based on the ground polar cap magnetic observations is a reliable diagnosis of  the solar wind energy coming into the magnetosphere Method for the uninterruptive monitoring of the magnetosphere state (i.e. space weather). It shows that the solar wind energy pumping power, can be described by the PC growth rate, thus,  the magnetospheric substorms features are predetermined by the PC dynamics. Furthermore, it goes on to show that the beginning and ending of magnetic storms is predictable. The magnetic storm start only if the solar energy input into the magnetosphere exceeds a certain level and stops when the energy input turns out to be below this  level.

List of figures
x
List of tables
xviii
List of abbreviations and acronyms
xix
About the authors xxiii
1 Introduction
1(2)
1.1 Reference
2(1)
2 Physical background (historical outline)
3(20)
2.1 Polar geomagnetic disturbances influenced by solar wind
3(3)
2.2 Structure of electric fields in polar ionosphere
6(2)
2.3 Magnetospheric field-aligned currents
8(2)
2.4 Relation of field-aligned currents to aurora and particle precipitation
10(2)
2.5 Model computations of field-aligned currents and ionospheric electric field and currents
12(2)
2.6 Approaches to the idea of PC index
14(2)
2.6.1 PCL index
14(1)
2.6.2 MAGPC index
14(2)
2.7 Summary
16(1)
2.8 References
16(7)
3 A method for the PC index determination
23(18)
3.1 Coefficients determining relationship between coupling function and magnetic activity
24(5)
3.1.1 Level of reference for magnetic disturbance value δF
24(1)
3.1.2 Direction of disturbance vectors and link between the δF and EKL values
24(5)
3.2 Calculation of the PC index
29(1)
3.3 Interference of DP3 and DP4 disturbances
30(3)
3.4 Verification of the derived PC indices
33(3)
3.5 Physical meaning of the PC index
36(2)
3.6 Summary
38(1)
3.7 References
39(2)
4 Special features of procedure for on-line PC index derivation
41(36)
4.1 A need in producing 1 -min PC index
41(1)
4.2 Postulates used as a basis for the on-line PC index derivation
42(2)
4.3 Derivation of quiet daily curve (QDC)
44(12)
4.3.1 Methods used to determine a level of reference and their inadequacy
44(2)
4.3.2 Parameterization of geomagnetic variations for distinguishing quiet periods
46(1)
4.3.3 A procedure for calculating a daily quiet curve (QDC)
46(2)
4.3.4 Interpolation of a QDC for each day
48(3)
4.3.5 Extrapolation of a QDC for subsequent days
51(2)
4.3.6 Validity of the QDC derivation method
53(3)
4.4 Allowance for IMF sector structure
56(10)
4.4.1 Necessity of SS evaluation for QDC derivation
56(2)
4.4.2 Separation of the sector structure effect in long series of observational data
58(3)
4.4.3 On-line identification of the SS effect by ground magnetic data
61(5)
4.5 Invariability of parameters α β and in a solar activity cycle
66(9)
4.5.1 The role of QDC in determination of parameters, α and β
66(5)
4.5.2 Comparison of parameters α β calculated for solar maximum and minimum cpochs
71(4)
4.6 Summary
75(1)
4.7 References
75(2)
5 Solar wind-magnetosphere-ionosphere coupling and the PC index
77(26)
5.1 Concepts of solar wind-magnetosphere coupling
77(6)
5.1.1 Dungey's concept of reconnection
77(3)
5.1.2 Concept of `viscous-like' interaction
80(1)
5.1.3 Concept of magnetospheric plasma gradients as a driver for field-aligned currents
80(3)
5.2 Solar wind-magnetosphere-ionosphere coupling and field-aligned currents
83(2)
5.3 Solar wind-magnetosphere coupling functions
85(2)
5.4 Saturation of cross-polar cap potential
87(3)
5.5 PC index saturation
90(3)
5.6 Summary
93(1)
5.7 References
94(9)
6 PC index response to solar wind geoeffective variations
103(26)
6.1 PC index timing vs. interplanetary electric field variations
103(1)
6.2 Solar wind dynamic pressure variations
104(12)
6.2.1 Solar wind dynamic pressure impact on magnetospheric processes
104(2)
6.2.2 PC index timing vs. sudden changes in solar wind dynamic pressure
106(2)
6.2.3 Statistical relationships between the PC index and pressure pulses P
108(7)
6.2.4 Relationships between PC and Psw under conditions of negative pressure gradients and northward IMF
115(1)
6.3 Dynamics of the polar convection patterns related to solar wind pressure pulses
116(3)
6.4 Field-aligned currents determining the response of the PC index to solar wind pressure pulses
119(7)
6.5 Summary
126(1)
6.6 References
126(3)
7 PC index as an indicator of substorm development
129(40)
7.1 Previous analyzes of relations between polar cap magnetic activity and magnetosphere substorms
129(1)
7.2 Isolated substorms
130(10)
7.3 Periodically repetitive magnetic disturbances (sawtooth substorms)
140(18)
7.3.1 Definition of sawtooth substorms
140(4)
7.3.2 Examples of sawtooth magnetic disturbances
144(4)
7.3.3 Statistical relationship between PC (EKL) variation and sawtooth magnetic disturbances development
148(9)
7.3.4 Evaluation of substorm back influence on polar cap magnetic activity
157(1)
7.4 PC index as a precursor of magnetic substorm development
158(4)
7.5 Threshold-dependent driven mode of magnetospheric substorms
162(2)
7.6 Summary
164(1)
7.7 References
165(4)
8 PC index as an indicator of magnetic storm development
169(18)
8.1 Identification of magnetic storms and separation of growth and decay parts in the main storm phase
169(3)
8.2 A PC index value required for the storm beginning
172(6)
8.3 Relationship between storm parameters and PC (EKL) values
178(2)
8.4 `Dst index saturation' and interplanetary electric field - magnetosphere coupling function
180(4)
8.5 Summary
184(1)
8.6 References
185(2)
9 Specific features of magnetic disturbances occurring under conditions of a steadily high energy input into the magnetosphere
187(32)
9.1 Inconsistency of substorm magnetic and aurora signatures in the case of powerful sawtooth substorms
187(14)
9.2 Relationships between PC index and substorm (AL) and storm (ASYM) indices in conditions of the steadily high solar wind energy input into the magnetosphere
201(14)
9.2.1 Existing ideas on interplay between magnetic storms and substorms
201(1)
9.2.2 Relationships between PC, AL and ASYM indices for individual substorms
202(4)
9.2.3 Relationships between PC, AL and ASYM indices during `PC growth phase' and `PC decline phase'
206(7)
9.2.4 A concept of powerful substorms reverse effect
213(2)
9.3 Summary
215(1)
9.4 References
216(3)
10 Magnetic disturbances developing under conditions of northward IMF
219(12)
10.1 Input of the IMF azimuthal component in coupling function EKL
219(2)
10.2 Magnetic storms developed under conditions of a northward IMF
221(1)
10.3 Magnetospheric substorms developed under conditions of a northward IMF
221(3)
10.4 Magnetospheric substorms triggered by sharp changes in the IMF vertical or azimuthal components
224(4)
10.5 Summary
228(1)
10.6 References
228(3)
11 Causative discrepancies between summer and winter PC indices: physical implications
231(16)
11.1 Reasons for discrepancy between summer and winter PC indices
231(1)
11.2 Effects of IMF northward and azimuthal components
232(2)
11.3 Effect of solar proton events
234(2)
11.4 Effect of solar wind dynamic pressure pulses
236(1)
11.5 Substorm development effect
237(3)
11.6 Role of auroral ionosphere in supporting the magnetic activity in the winter polr cap
240(2)
11.7 Statistical significance of PC seasonal differences
242(1)
11.8 Summary
243(1)
11.9 References
244(3)
12 Monitoring of the auroral ionosphere
247(10)
12.1 Parameters characterizing an auroral ionosphere state
247(1)
12.2 Auroral absorption
248(5)
12.3 Ionospheric Es and F2 layers
253(2)
12.4 Summary
255(1)
12.5 References
255(2)
13 PC index as indicator of anomalous atmospheric processes in the winter Antarctica
257(22)
13.1 Solar activity influence on the Earth's atmosphere: variations in cosmic rays flow or changes in solar wind parameters?
257(4)
13.2 Distinctive features of atmospheric circulation over the winter Antarctica
261(4)
13.3 Cloudiness and sudden warmings in central Antarctica
265(3)
13.4 Changes in height profiles of temperature and pressure above Vostok station
268(2)
13.5 Anomalous winds at the Antarctic stations and their relation to the PC index
270(5)
13.6 Mechanisms suggested to explain solar wind influence on atmospheric processes
275(1)
13.7 Summary
276(1)
13.8 References
276(3)
14 Conclusions
279(4)
14.1 References
281(2)
Acknowledgements 283(2)
Index 285