Atjaunināt sīkdatņu piekrišanu

Spacecraft Attitude Dynamics [Mīkstie vāki]

  • Formāts: Paperback / softback, 592 pages, height x width x depth: 234x155x27 mm, weight: 756 g, Illustrations, unspecified
  • Sērija : Dover Books on Aeronautical Engineering
  • Izdošanas datums: 28-Jan-2005
  • Izdevniecība: Dover Publications Inc.
  • ISBN-10: 0486439259
  • ISBN-13: 9780486439259
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 38,05 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 592 pages, height x width x depth: 234x155x27 mm, weight: 756 g, Illustrations, unspecified
  • Sērija : Dover Books on Aeronautical Engineering
  • Izdošanas datums: 28-Jan-2005
  • Izdevniecība: Dover Publications Inc.
  • ISBN-10: 0486439259
  • ISBN-13: 9780486439259
Citas grāmatas par šo tēmu:
This text is a reprint the 1986 edition published by John Wiley & Sons, Inc., New York, in which Hughes (formerly an instructor in space systems engineering, U. of Toronto) focuses on spacecraft attitude dynamics--the applied science whose aim is to understand and predict how spacecraft orientation evolves. Written as a reference/textbook for engineering science students, researchers, and practicing aerospace engineers, the text assumes knowledge of vector dynamics and linear algebra. The new edition includes a brief new preface by Hughes; no other revisions are specified. Annotation ©2004 Book News, Inc., Portland, OR (booknews.com)

Comprehensive coverage includes environmental torques,  energy dissipation, motion equations for four archetypical systems, orientation parameters, illustrations of key concepts with on-orbit flight data, and typical engineering hardware. 1986 edition.


From its roots in classical mechanics and reliance on stability theory to the evolution of practical stabilization ideas, this volume covers environmental torques encountered in space; energy dissipation; motion equations for four archetypical systems; orientation parameters; illustrations of key concepts with on-orbit flight data; and typical engineering hardware. 1986 edition.
CHAPTER 1 INTRODUCTION 1(5)
CHAPTER 2 ROTATIONAL KINEMATICS 6(33)
2.1 Reference Frames and Rotations
6(9)
2.2 Angular Displacement Parameters
15(7)
2.3 Angular Velocity
22(7)
2.4 Comments on Parameter Alternatives
29(2)
2.5 Problems
31(8)
CHAPTER 3 ATTITUDE MOTION EQUATIONS 39(54)
3.1 Motion Equations for a Point Mass, P
40(2)
3.2 Motion Equations for a System of Point Masses, ΣPn
42(13)
3.3 Motion Equations for a Rigid Body, R
55(6)
3.4 A System with Damping, R+P
61(4)
3.5 A Dual-Spin System, R+ W
65(5)
3.6 A Simple Multi-Rigid-Body System, R1 + R2
70(6)
3.7 Dynamics of a System of Rigid Bodies
76(7)
3.8 Problems
83(10)
CHAPTER 4 ATTITUDE DYNAMICS OF A RIGID BODY 93(46)
4.1 Basic Motion Equations
93(3)
4.2 Torque-Free Motion; R Inertially Axisymmetrical
96(8)
4.3 Torque-Free Motion; R Tri-inertial
104(10)
4.4 Stability of Motion for R
114(10)
4.5 Motion of a Rigid Body Under Torque
124(5)
4.6 Problems
129(10)
CHAPTER 5 EFFECT OF INTERNAL ENERGY DISSIPATION ON THE DIRECTIONAL STABILITY OF SPINNING BODIES 139(17)
5.1 Quasi-Rigid Body with an Energy Sink, 2
140(6)
5.2 Rigid Body with a Point Mass Damper, R + P
146(6)
5.3 Problems
152(4)
CHAPTER 6 DIRECTIONAL STABILITY OF MULTISPIN VEHICLES 156(36)
6.1 The R + W Gyrostat
156(5)
6.2 Gyrostat with Nonspinning Carrier
161(3)
6.3 The Zero Momentum Gyrostat
164(1)
6.4 The General Case
165(13)
6.5 System of Coaxial Wheels
178(6)
6.6 Problems
184(8)
CHAPTER 7 EFFECT OF INTERNAL ENERGY DISSIPATION ON THE DIRECTIONAL STABILITY OF GYROSTATS 192(40)
7.1 Energy Sink Analyses
193(24)
7.2 Gyrostats with Discrete Dampers
217(8)
7.3 Problems
225(7)
CHAPTER 8 SPACECRAFT TORQUES 232(49)
8.1 Gravitational Torque
233(15)
8.2 Aerodynamic Torque
248(12)
8.3 Radiation Torques
260(4)
8.4 Other Environmental Torques
264(5)
8.5 Nonenvironmental Torques
269(2)
8.6 Closing Remarks
271(1)
8.7 Problems
272(9)
CHAPTER 9 GRAVITATIONAL STABILIZATION 281(73)
9.1 Context
282(11)
9.2 Equilibria for a Rigid Body in a Circular Orbit
293(20)
9.3 Design of Gravitationally Stabilized Satellites
313(22)
9.4 Flight Experience
335(11)
9.5 Problems
346(8)
CHAPTER 10 SPIN STABILIZATION IN ORBIT 354(69)
10.1 Spinning Rigid Body in Orbit
356(25)
10.2 Design of Spin-Stabilized Satellites
381(19)
10.3 Long-Term Effects of Environmental Torques, and Flight Data
400(16)
10.4 Problems
416(7)
CHAPTER 11 DUAL-STABILIZATION IN ORBIT: GYROSTATS AND BIAS MOMENTUM SATELLITES 423(57)
11.1 The Gyrostat in Orbit
424(20)
11.2 Gyrostats with External Rotors
444(11)
11.3 Bias Momentum Satellites
455(15)
11.4 Problems
470(10)
APPENDIX A ELEMENTS OF STABILITY THEORY 480(42)
A.1 Stability Definitions
481(11)
A.2 Stability of the Origin
492(1)
A.3 The Linear Approximation
493(9)
A.4 Nonlinear Inferences from Infinitesimal Stability Properties
502(2)
A.5 Liapunov's Method
504(6)
A.6 Stability of Linear Stationary Mechanical Systems
510(10)
A.7 Stability Ideas Specialized to Attitude Dynamics
520(2)
APPENDIX B VECTRICES 522(13)
B.1 Remarks on Terminology
523(1)
B.2 Vectrices
523(4)
B.3 Several Reference Frames
527(3)
B.4 Kinematics of Vectrices
530(2)
B.5 Derivative with Respect to a Vector
532(3)
APPENDIX C LIST OF SYMBOLS 535(6)
C.1 Lowercase Symbols
535(1)
C.2 Uppercase Symbols
536(2)
C.3 Lowercase Greek Symbols
538(1)
C.4 Uppercase Greek Symbols
539(1)
C.5 Other Notational Conventions
539(2)
REFERENCES 541(18)
ERRATA 559(6)
INDEX 565