Atjaunināt sīkdatņu piekrišanu

E-grāmata: Spacecraft Trajectory Optimization

Edited by (University of Illinois, Urbana-Champaign)
  • Formāts: PDF+DRM
  • Sērija : Cambridge Aerospace Series
  • Izdošanas datums: 23-Aug-2010
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9780511903915
  • Formāts - PDF+DRM
  • Cena: 45,20 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Cambridge Aerospace Series
  • Izdošanas datums: 23-Aug-2010
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9780511903915

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This is a long-overdue volume dedicated to space trajectory optimization. Interest in the subject has grown, as space missions of increasing levels of sophistication, complexity, and scientific return - hardly imaginable in the 1960s - have been designed and flown. Although the basic tools of optimization theory remain an accepted canon, there has been a revolution in the manner in which they are applied and in the development of numerical optimization. This volume purposely includes a variety of both analytical and numerical approaches to trajectory optimization. The choice of authors has been guided by the editor's intention to assemble the most expert and active researchers in the various specialities presented. The authors were given considerable freedom to choose their subjects, and although this may yield a somewhat eclectic volume, it also yields chapters written with palpable enthusiasm and relevance to contemporary problems.

Papildus informācija

This volume on space trajectory optimization includes a variety of both analytical and numerical approaches to trajectory optimization.
Preface xi
1 The Problem of Spacecraft Trajectory Optimization
1(15)
Bruce A. Conway
1.1 Introduction
1(2)
1.2 Solution Methods
3(9)
1.3 The Situation Today with Regard to Solving Optimal Control Problems
12(4)
References
13(3)
2 Primer Vector Theory and Applications
16(21)
John E. Prussing
2.1 Introduction
16(1)
2.2 First-Order Necessary Conditions
17(6)
2.3 Solution to the Primer Vector Equation
23(1)
2.4 Application of Primer Vector Theory to an Optimal Impulsive Trajectory
24(13)
References
36(1)
3 Spacecraft Trajectory Optimization Using Direct Transcription and Nonlinear Programming
37(42)
Bruce A. Conway
Stephen W. Paris
3.1 Introduction
37(3)
3.2 Transcription Methods
40(12)
3.3 Selection of Coordinates
52(8)
3.4 Modeling Propulsion Systems
60(2)
3.5 Generating an Initial Guess
62(3)
3.6 Computational Considerations
65(6)
3.7 Verifying Optimality
71(8)
References
76(3)
4 Elements of a Software System for Spacecraft Trajectory Optimization
79(33)
Cesar Ocampo
4.1 Introduction
79(1)
4.2 Trajectory Model
80(5)
4.3 Equations of Motion
85(1)
4.4 Finite Burn Control Models
85(5)
4.5 Solution Methods
90(3)
4.6 Trajectory Design and Optimization Examples
93(17)
4.7 Concluding Remarks
110(2)
References
110(2)
5 Low-Thrust Trajectory Optimization Using Orbital Averaging and Control Parameterization
112(27)
Craig A. Kluever
5.1 Introduction and Background
112(1)
5.2 Low-Thrust Trajectory Optimization
113(12)
5.3 Numerical Results
125(11)
5.4 Conclusions
136(3)
Nomenclature
136(2)
References
138(1)
6 Analytic Representations of Optimal Low-Thrust Transfer in Circular Orbit
139(39)
Jean A. Kechichian
6.1 Introduction
139(2)
6.2 The Optimal Unconstrained Transfer
141(4)
6.3 The Optimal Transfer with Altitude Constraints
145(12)
6.4 The Split-Sequence Transfers
157(21)
References
177(1)
7 Global Optimization and Space Pruning for Spacecraft Trajectory Design
178(24)
Dario Izzo
7.1 Introduction
178(1)
7.2 Notation
179(1)
7.3 Problem Transcription
179(2)
7.4 The MGA Problem
181(2)
7.5 The MGA-1DSM Problem
183(3)
7.6 Benchmark Problems
186(4)
7.7 Global Optimization
190(4)
7.8 Space Pruning
194(3)
7.9 Concluding Remarks
197(5)
Appendix 7A
198(1)
Appendix 7B
199(1)
References
200(2)
8 Incremental Techniques for Global Space Trajectory Design
202(36)
Massimiliano Vasile
Matteo Ceriotti
8.1 Introduction
202(1)
8.2 Modeling MGA Trajectories
203(6)
8.3 The Incremental Approach
209(7)
8.4 Testing Procedure and Performance Indicators
216(5)
8.5 Case Studies
221(13)
8.6 Conclusions
234(4)
References
235(3)
9 Optimal Low-Thrust Trajectories Using Stable Manifolds
238(25)
Christopher Martin
Bruce A. Conway
9.1 Introduction
238(2)
9.2 System Dynamics
240(7)
9.3 Basics of Trajectory Optimization
247(3)
9.4 Generation of Periodic Orbit Constructed as an Optimization Problem
250(3)
9.5 Optimal Earth Orbit to Lunar Orbit Transfer: Part 1---GTO to Periodic Orbit
253(3)
9.6 Optimal Earth Orbit to Lunar Orbit Transfer: Part 2---Periodic Orbit to Low-Lunar Orbit
256(3)
9.7 Extension of the Work to Interplanetary Flight
259(1)
9.8 Conclusions
260(3)
References
261(2)
10 Swarming Theory Applied to Space Trajectory Optimization
263(32)
Mauro Pontani
Bruce A. Conway
10.1 Introduction
263(3)
10.2 Description of the Method
266(3)
10.3 Lyapunov Periodic Orbits
269(5)
10.4 Lunar Periodic Orbits
274(3)
10.5 Optimal Four-Impulse Orbital Rendezvous
277(7)
10.6 Optimal Low-Thrust Orbital Transfers
284(6)
10.7 Concluding Remarks
290(5)
References
291(4)
Index 295
Bruce Conway is a Professor of Aerospace Engineering at the University of Illinois, Urbana-Champaign. He received his Ph.D. in aeronautics and astronautics at Stanford University in 1981. Professor Conway's research interests include orbital mechanics, optimal control, differential games, and improved methods for the numerical solution of problems in optimization.