Preface to the First Edition |
|
xiii | |
Preface to the Second Edition |
|
xv | |
Author |
|
xvii | |
1 Working with Spatial Data |
|
1 | (18) |
|
|
1 | (4) |
|
1.2 Analysis of Spatial Data |
|
|
5 | (4) |
|
1.2.1 Types of Spatial Data |
|
|
5 | (2) |
|
1.2.2 The Components of Spatial Data |
|
|
7 | (1) |
|
1.2.3 Spatial Data Models |
|
|
7 | (1) |
|
1.2.4 Topics Covered in the Text |
|
|
8 | (1) |
|
1.3 The Data Sets Analyzed in This Book |
|
|
9 | (7) |
|
1.3.1 Data Set 1: Yellow-Billed Cuckoo Habitat |
|
|
10 | (2) |
|
1.3.2 Data Set 2: Environmental Characteristics of Oak Woodlands |
|
|
12 | (1) |
|
1.3.3 Data Set 3: Uruguayan Rice Farmers |
|
|
13 | (1) |
|
1.3.4 Data Set 4: Factors Underlying Yield in Two Fields |
|
|
14 | (1) |
|
1.3.5 Comparing the Data Sets |
|
|
15 | (1) |
|
|
16 | (3) |
2 The R Programming Environment |
|
19 | (48) |
|
|
19 | (2) |
|
|
19 | (1) |
|
2.1.2 Setting Yourself Up to Use This Book |
|
|
20 | (1) |
|
|
21 | (5) |
|
|
26 | (4) |
|
2.3.1 Looping and Branching |
|
|
26 | (2) |
|
2.3.2 Functional Programming |
|
|
28 | (2) |
|
|
30 | (13) |
|
2.4.1 Data Structures in R |
|
|
30 | (3) |
|
2.4.2 Basic Data Input and Output |
|
|
33 | (1) |
|
2.4.3 Spatial Data Structures |
|
|
34 | (9) |
|
2.5 Writing Functions in R |
|
|
43 | (3) |
|
|
46 | (15) |
|
2.6.1 Traditional Graphics in R: Attribute Data |
|
|
47 | (5) |
|
2.6.2 Traditional Graphics in R: Spatial Data |
|
|
52 | (3) |
|
2.6.3 Trellis Graphics in R, Attribute Data |
|
|
55 | (2) |
|
2.6.4 Trellis Graphics in R, Spatial Data |
|
|
57 | (2) |
|
|
59 | (2) |
|
2.7 Continuing on from Here with R |
|
|
61 | (1) |
|
|
62 | (1) |
|
|
62 | (5) |
3 Statistical Properties of Spatially Autocorrelated Data |
|
67 | (38) |
|
|
67 | (1) |
|
3.2 Components of a Spatial Random Process |
|
|
68 | (9) |
|
3.2.1 Spatial Trends in Data |
|
|
68 | (6) |
|
|
74 | (3) |
|
3.3 Monte Carlo Simulation |
|
|
77 | (2) |
|
3.4 A Review of Hypothesis and Significance Testing |
|
|
79 | (5) |
|
3.5 Modeling Spatial Autocorrelation |
|
|
84 | (14) |
|
3.5.1 Monte Carlo Simulation of Time Series |
|
|
84 | (4) |
|
3.5.2 Modeling Spatial Contiguity |
|
|
88 | (5) |
|
3.5.3 Modeling Spatial Association in R |
|
|
93 | (5) |
|
3.6 Application to Field Data |
|
|
98 | (5) |
|
3.6.1 Setting Up the Data |
|
|
98 | (3) |
|
3.6.2 Checking Sequence Validity |
|
|
101 | (1) |
|
3.6.3 Determining Spatial Autocorrelation |
|
|
102 | (1) |
|
|
103 | (1) |
|
|
103 | (2) |
4 Measures of Spatial Autocorrelation |
|
105 | (30) |
|
|
105 | (1) |
|
4.2 Preliminary Considerations |
|
|
105 | (5) |
|
|
105 | (3) |
|
4.2.2 Resampling and Randomization Assumptions |
|
|
108 | (1) |
|
4.2.3 Testing the Null Hypothesis |
|
|
109 | (1) |
|
4.3 Join-Count Statistics |
|
|
110 | (4) |
|
4.4 Moran's I and Geary's c |
|
|
114 | (3) |
|
4.5 Measures of Autocorrelation Structure |
|
|
117 | (10) |
|
4.5.1 The Moran Correlogram |
|
|
117 | (2) |
|
4.5.2 The Moran Scatterplot |
|
|
119 | (2) |
|
4.5.3 Local Measures of Autocorrelation |
|
|
121 | (3) |
|
4.5.4 Geographically Weighted Regression |
|
|
124 | (3) |
|
4.6 Measuring Autocorrelation of Spatially Continuous Data |
|
|
127 | (6) |
|
|
127 | (5) |
|
4.6.2 The Covariogram and the Correlogram |
|
|
132 | (1) |
|
|
133 | (1) |
|
|
133 | (2) |
5 Sampling and Data Collection |
|
135 | (32) |
|
|
135 | (3) |
|
5.2 Preliminary Considerations |
|
|
138 | (4) |
|
5.2.1 The Artificial Population |
|
|
138 | (3) |
|
5.2.2 Accuracy, Bias, Precision, and Variance |
|
|
141 | (1) |
|
5.2.3 Comparison Procedures |
|
|
142 | (1) |
|
5.3 Developing the Sampling Patterns |
|
|
142 | (12) |
|
|
142 | (2) |
|
5.3.2 Geographically Stratified Sampling |
|
|
144 | (2) |
|
5.3.3 Sampling on a Regular Grid |
|
|
146 | (2) |
|
5.3.4 Stratification Based on a Covariate |
|
|
148 | (5) |
|
|
153 | (1) |
|
5.4 Methods for Variogram Estimation |
|
|
154 | (3) |
|
5.5 Estimating the Sample Size |
|
|
157 | (1) |
|
5.6 Sampling for Thematic Mapping |
|
|
158 | (1) |
|
5.7 Design-Based and Model-Based Sampling |
|
|
159 | (5) |
|
|
164 | (1) |
|
|
164 | (3) |
6 Preparing Spatial Data for Analysis |
|
167 | (32) |
|
|
167 | (1) |
|
6.2 Quality of Attribute Data |
|
|
168 | (7) |
|
6.2.1 Dealing with Outliers and Contaminants |
|
|
168 | (2) |
|
6.2.2 Quality of Ecological Survey Data |
|
|
170 | (1) |
|
6.2.3 Quality of Automatically Recorded Data |
|
|
170 | (5) |
|
6.3 Spatial Interpolation Procedures |
|
|
175 | (13) |
|
6.3.1 Inverse Weighted Distance Interpolation |
|
|
175 | (5) |
|
6.3.2 Kriging Interpolation |
|
|
180 | (3) |
|
6.3.3 Cokriging Interpolation |
|
|
183 | (5) |
|
6.4 Spatial Rectification and Alignment of Data |
|
|
188 | (8) |
|
6.4.1 Definitions of Scale Related Processes |
|
|
188 | (2) |
|
|
190 | (3) |
|
|
193 | (3) |
|
|
196 | (1) |
|
|
197 | (2) |
7 Preliminary Exploration of Spatial Data |
|
199 | (56) |
|
|
199 | (2) |
|
|
201 | (13) |
|
|
214 | (15) |
|
|
229 | (11) |
|
|
240 | (11) |
|
|
251 | (1) |
|
|
251 | (4) |
8 Data Exploration Using Non-Spatial Methods: The Linear Model |
|
255 | (52) |
|
|
255 | (1) |
|
8.2 Multiple Linear Regression |
|
|
255 | (15) |
|
8.2.1 The Many Perils of Model Selection |
|
|
255 | (6) |
|
8.2.2 Multicollinearity, Added Variable Plots, and Partial Residual Plots |
|
|
261 | (8) |
|
8.2.3 A Cautious Approach Model Selection as an Exploratory Tool |
|
|
269 | (1) |
|
8.3 Building a Multiple Regression Model for Field 4.1 |
|
|
270 | (11) |
|
8.4 Generalized Linear Models |
|
|
281 | (22) |
|
8.4.1 Introduction to Generalized Linear Models |
|
|
281 | (7) |
|
8.4.2 Multiple Logistic Regression Model for Data Set 2 |
|
|
288 | (7) |
|
8.4.3 Logistic Regression Model of Count Data for Data Set 1 |
|
|
295 | (4) |
|
8.4.4 Analysis of the Counts of Data Set 1: Zero-Inflated Poisson Data |
|
|
299 | (4) |
|
|
303 | (1) |
|
|
304 | (3) |
9 Data Exploration Using Non-Spatial Methods: Nonparametric Methods |
|
307 | (40) |
|
|
307 | (1) |
|
9.2 The Generalized Additive Model |
|
|
307 | (10) |
|
9.3 Classification and Regression Trees (a.k.a. Recursive Partitioning) |
|
|
317 | (22) |
|
9.3.1 Introduction to the Method |
|
|
317 | (3) |
|
9.3.2 The Mathematics of Recursive Partitioning |
|
|
320 | (1) |
|
9.3.3 Exploratory Analysis of Data Set 2 with Regression Trees |
|
|
321 | (7) |
|
9.3.4 Exploratory Analysis of Data Set 3 with Recursive Partitioning |
|
|
328 | (6) |
|
9.3.5 Exploratory Analysis of Field 4.1 with Recursive Partitioning |
|
|
334 | (5) |
|
|
339 | (6) |
|
9.4.1 Introduction to Random Forest |
|
|
339 | (3) |
|
9.4.2 Application to Data Set 2 |
|
|
342 | (3) |
|
|
345 | (1) |
|
|
345 | (2) |
10 Variance Estimation, the Effective Sample Size, and the Bootstrap |
|
347 | (26) |
|
|
347 | (4) |
|
10.2 Bootstrap Estimation of the Standard Error |
|
|
351 | (4) |
|
10.3 Bootstrapping Time Series Data |
|
|
355 | (7) |
|
10.3.1 The Problem with Correlated Data |
|
|
355 | (2) |
|
10.3.2 The Block Bootstrap |
|
|
357 | (3) |
|
10.3.3 The Parametric Bootstrap |
|
|
360 | (2) |
|
10.4 Bootstrapping Spatial Data |
|
|
362 | (6) |
|
10.4.1 The Spatial Block Bootstrap |
|
|
362 | (4) |
|
10.4.2 The Parametric Spatial Bootstrap |
|
|
366 | (2) |
|
10.4.3 Power of the Tests |
|
|
368 | (1) |
|
10.5 Application to the EM38 Data |
|
|
368 | (3) |
|
|
371 | (1) |
|
|
372 | (1) |
11 Measures of Bivariate Association between Two Spatial Variables |
|
373 | (40) |
|
|
373 | (3) |
|
11.2 Estimating and Testing the Correlation Coefficient |
|
|
376 | (10) |
|
11.2.1 The Correlation Coefficient |
|
|
376 | (2) |
|
11.2.2 The Clifford et al. (1989) Correction |
|
|
378 | (3) |
|
11.2.3 The Bootstrap Variance Estimate |
|
|
381 | (2) |
|
11.2.4 Application to the Example Problem |
|
|
383 | (3) |
|
|
386 | (12) |
|
11.3.1 Large Sample Size Contingency Tables |
|
|
386 | (7) |
|
11.3.2 Small Sample Size Contingency Tables |
|
|
393 | (5) |
|
11.4 The Mantel and Partial Mantel Statistics |
|
|
398 | (6) |
|
11.4.1 The Mantel Statistic |
|
|
398 | (3) |
|
11.4.2 The Partial Mantel Test |
|
|
401 | (3) |
|
11.5 The Modifiable Areal Unit Problem and the Ecological Fallacy |
|
|
404 | (6) |
|
11.5.1 The Modifiable Areal Unit Problem |
|
|
404 | (4) |
|
11.5.2 The Ecological Fallacy |
|
|
408 | (2) |
|
|
410 | (1) |
|
|
410 | (3) |
12 The Mixed Model |
|
413 | (32) |
|
|
413 | (4) |
|
12.2 Basic Properties of the Mixed Model |
|
|
417 | (2) |
|
12.3 Application to Data Set 3 |
|
|
419 | (3) |
|
12.4 Incorporating Spatial Autocorrelation |
|
|
422 | (7) |
|
12.5 Generalized Least Squares |
|
|
429 | (2) |
|
12.6 Spatial Logistic Regression |
|
|
431 | (12) |
|
12.6.1 Upscaling Data Set 2 in the Coast Range |
|
|
431 | (5) |
|
12.6.2 The Incorporation of Spatial Autocorrelation |
|
|
436 | (7) |
|
|
443 | (1) |
|
|
444 | (1) |
13 Regression Models for Spatially Autocorrelated Data |
|
445 | (22) |
|
|
445 | (5) |
|
13.2 Detecting Spatial Autocorrelation in a Regression Model |
|
|
450 | (2) |
|
13.3 Models for Spatial Processes |
|
|
452 | (3) |
|
13.3.1 The Spatial Lag Model |
|
|
452 | (2) |
|
13.3.2 The Spatial Error Model |
|
|
454 | (1) |
|
13.4 Determining the Appropriate Regression Model |
|
|
455 | (3) |
|
13.4.1 Formulation of the Problem |
|
|
455 | (1) |
|
13.4.2 The Lagrange Multiplier Test |
|
|
456 | (2) |
|
13.5 Fitting the Spatial Lag and Spatial Error Models |
|
|
458 | (2) |
|
13.6 The Conditional Autoregressive Model |
|
|
460 | (2) |
|
13.7 Application of Simultaneous Autoregressive and Conditional Autoregressive Models to Field Data |
|
|
462 | (4) |
|
|
462 | (3) |
|
13.7.2 Comparison of the Mixed Model and Spatial Autoregression |
|
|
465 | (1) |
|
|
466 | (1) |
|
|
466 | (1) |
14 Bayesian Analysis of Spatially Autocorrelated Data |
|
467 | (46) |
|
|
467 | (4) |
|
14.2 Markov Chain Monte Carlo Methods |
|
|
471 | (7) |
|
14.3 Introduction to WinBUGS |
|
|
478 | (14) |
|
|
478 | (3) |
|
14.3.2 WinBUGS Diagnostics |
|
|
481 | (2) |
|
14.3.3 Introduction to R2WinBUGS |
|
|
483 | (7) |
|
14.3.4 Generalized Linear Models in WinBUGS |
|
|
490 | (2) |
|
|
492 | (6) |
|
14.5 Incorporation of Spatial Effects |
|
|
498 | (11) |
|
14.5.1 Spatial Effects in the Linear Model |
|
|
498 | (3) |
|
14.5.2 Application to Data Set 3 |
|
|
501 | (4) |
|
14.5.3 The spBayes Package |
|
|
505 | (4) |
|
14.6 Comparison of the Methods |
|
|
509 | (1) |
|
|
510 | (1) |
|
|
511 | (2) |
15 Analysis of Spatiotemporal Data |
|
513 | (40) |
|
|
513 | (1) |
|
15.2 Spatiotemporal Data Interpolation |
|
|
513 | (12) |
|
15.2.1 Representing Spatiotemporal Data |
|
|
513 | (5) |
|
15.2.2 The Spatiotemporal Variogram |
|
|
518 | (5) |
|
15.2.3 Interpolating Spatiotemporal Data |
|
|
523 | (2) |
|
15.3 Spatiotemporal Process Models |
|
|
525 | (4) |
|
15.3.1 Models for Dispersing Populations |
|
|
525 | (1) |
|
15.3.2 A Process Model for the Yield Data |
|
|
526 | (3) |
|
15.4 Finite State and Time Models |
|
|
529 | (14) |
|
15.4.1 Determining Finite State and Time Models Using Clustering |
|
|
529 | (9) |
|
15.4.2 Factors Underlying Finite State and Time Models |
|
|
538 | (5) |
|
15.5 Bayesian Spatiotemporal Analysis |
|
|
543 | (7) |
|
15.5.1 Introduction to Bayesian Updating |
|
|
543 | (3) |
|
15.5.2 Application of Bayesian Updating to Data Set 3 |
|
|
546 | (4) |
|
|
550 | (1) |
|
|
551 | (2) |
16 Analysis of Data from Controlled Experiments |
|
553 | (20) |
|
|
553 | (1) |
|
16.2 Classical Analysis of Variance |
|
|
554 | (5) |
|
16.3 The Comparison of Methods |
|
|
559 | (7) |
|
16.3.1 The Comparison Statistics |
|
|
559 | (2) |
|
16.3.2 The Papadakis Nearest-Neighbor Method |
|
|
561 | (1) |
|
|
562 | (1) |
|
16.3.4 The "Correlated Errors" Method |
|
|
563 | (2) |
|
16.3.5 Published Comparisons of the Methods |
|
|
565 | (1) |
|
16.4 Pseudoreplicated Data and the Effective Sample Size |
|
|
566 | (5) |
|
16.4.1 Pseudoreplicated Comparisons |
|
|
566 | (1) |
|
16.4.2 Calculation of the Effective Sample Size |
|
|
567 | (2) |
|
16.4.3 Application to Field Data |
|
|
569 | (2) |
|
|
571 | (1) |
|
|
572 | (1) |
17 Assembling Conclusions |
|
573 | (20) |
|
|
573 | (1) |
|
|
573 | (5) |
|
|
578 | (5) |
|
|
583 | (3) |
|
|
586 | (4) |
|
|
590 | (3) |
Appendix A: Review of Mathematical Concepts |
|
593 | (26) |
Appendix B: The Data Sets |
|
619 | (8) |
Appendix C: An R Thesaurus |
|
627 | (8) |
References |
|
635 | (22) |
Index |
|
657 | |