Atjaunināt sīkdatņu piekrišanu

Spatial Modeling Principles in Earth Sciences 2nd ed. 2016 [Hardback]

  • Formāts: Hardback, 413 pages, height x width: 235x155 mm, weight: 7627 g, 212 Illustrations, black and white; XII, 413 p. 212 illus., 1 Hardback
  • Izdošanas datums: 12-Oct-2016
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319417568
  • ISBN-13: 9783319417561
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 136,16 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 160,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 413 pages, height x width: 235x155 mm, weight: 7627 g, 212 Illustrations, black and white; XII, 413 p. 212 illus., 1 Hardback
  • Izdošanas datums: 12-Oct-2016
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319417568
  • ISBN-13: 9783319417561
Citas grāmatas par šo tēmu:
This is a revised and updated second edition, including new chapters on temporal and point uncertainty model, as well as on sampling and deterministic modeling. It is a comprehensive presentation of spatial modeling techniques used in the earth sciences, outlining original techniques developed by the author. Data collection in the earth sciences is difficult and expensive, but simple, rational and logical approaches help the reader to appreciate the fundamentals of advanced methodologies. It requires special care to gather accurate geological, hydrogeological, meteorological and hydrological information all with risk assessments. Spatial simulation methodologies in the earth sciences are essential, then, if we want to understand the variability in features such as fracture frequencies, rock quality, and grain size distribution in rock and porous media. This book outlines in a detailed yet accessible way the main spatial modeling techniques, in particular the Kriging methodology. I

t also presents many unique physical approaches, field cases, and sample interpretations.Since Kriging"s origin in the 1960s it has been developed into a number of new methods such as cumulative SV (CSV), point CSV (PCSV), and spatial dependence function, which have been applied in different aspects of the earth sciences. Each one of these techniques is explained in this book, as well as how they are used to model earth science phenomena such as geology, earthquakes, meteorology, and hydrology. In addition to Kriging and its variants, several alternatives to Kriging methodology are presented and the necessary steps in their applications are clearly explained. Simple spatial variation prediction methodologies are also revised with up-to-date literature, and the ways in which they relate to more advanced spatial modeling methodologies are explained. The book is a valuable resource for students, researchers and professionals of a broad range of disciplines including geology, geog

raphy, hydrology, meteorology, environment, image processing, spatial modeling and related topics. Keywords "Data mining - Geo-statistics - Kriging - Regional uncertainty - Spatial dependence - Spatial modeling - geographic data - geoscience - hydrology - image processing 

Introduction.- Sampling and Deterministic Modeling Methods.- Temporal and Point Uncertainty Modeling.- Classical Spatial Variation Models in Earth sciences.- Spatial Dependence Measures.- Spatial Modeling.- Spatial Simulation.- Index.
1 Introduction
1(24)
1.1 General
1(3)
1.2 Earth Sciences Phenomena
4(4)
1.3 Variability
8(5)
1.3.1 Temporal
12(1)
1.3.2 Point
12(1)
1.3.3 Regional
13(1)
1.3.4 Spatial
13(1)
1.4 Determinism
13(1)
1.5 Uncertainty
14(7)
1.5.1 Probabilistic
15(1)
1.5.2 Statistical
16(1)
1.5.3 Stochastic
17(1)
1.5.4 Fuzzy
18(1)
1.5.5 Chaotic Uncertainty
19(2)
1.6 Random Field (RF)
21(4)
References
22(3)
2 Sampling and Deterministic Modeling Methods
25(72)
2.1 General
25(1)
2.2 Observations
26(3)
2.3 Sampling
29(5)
2.4 Numerical Data
34(2)
2.5 Number of Data
36(10)
2.5.1 Small Sample Length of Independent Models
37(3)
2.5.2 Small Sample Length of Dependent Models
40(6)
2.6 Regional Representation
46(5)
2.6.1 Variability Range
46(3)
2.6.2 Inverse Distance Models
49(2)
2.7 Subareal Partition
51(4)
2.7.1 Triangularization
51(4)
2.8 Polygonizations
55(16)
2.8.1 Delaney, Varoni, and Thiessen Polygons
57(2)
2.8.2 Percentage-Weighted Polygon (PWP) Method
59(12)
2.9 Areal Coverage Probability
71(6)
2.9.1 Theoretical Treatment
73(3)
2.9.2 Extreme Value Probabilities
76(1)
2.10 Spatio-Temporal Drought Theory and Analysis
77(7)
2.10.1 Drought Parameters
80(4)
2.11 Spatio-Temporal Modeling
84(13)
References
95(2)
3 Point and Temporal Uncertainty Modeling
97(32)
3.1 General
97(2)
3.2 Regular Data Set
99(1)
3.3 Irregular Data Set
99(1)
3.4 Point Data Set Modeling
100(16)
3.4.1 Empirical Frequency Distribution Function
100(1)
3.4.2 Relative Frequency Definition
100(1)
3.4.3 Classical Definition
101(1)
3.4.4 Subjective Definition
101(4)
3.4.5 Empirical Cumulative Distribution Function
105(1)
3.4.6 Histogram and Theoretical Probability Distribution Function
106(6)
3.4.7 Cumulative Probability Distribution Function
112(1)
3.4.8 Prediction Methods
113(3)
3.5 Temporal Data Set Modeling
116(8)
3.5.1 Time Series Analysis
116(8)
3.6 Empirical Correlation Function
124(5)
References
127(2)
4 Classical Spatial Variation Models
129(48)
4.1 General
129(1)
4.2 Spatiotemporal Characteristics
130(1)
4.3 Spatial Pattern Search
131(7)
4.4 Simple Uniformity Test
138(3)
4.5 Random Field
141(4)
4.6 Cluster Sampling
145(1)
4.7 Nearest Neighbor Analysis
146(2)
4.8 Search Algorithms
148(5)
4.8.1 Geometric Weighting Functions
150(3)
4.9 Trend Surface Analysis
153(6)
4.9.1 Trend Model Parameter Estimations
155(4)
4.10 Multisite Kalman Filter (KF) Methodology
159(18)
4.10.1 1D KF
160(3)
4.10.2 KF Application
163(12)
References
175(2)
5 Spatial Dependence Measures
177(76)
5.1 General
177(2)
5.2 Isotropy, Anisotropy, and Homogeneity
179(3)
5.3 Spatial Dependence Function (SDF)
182(3)
5.4 Spatial Correlation Function (SCF)
185(5)
5.4.1 Correlation Coefficient Drawback
186(4)
5.5 Semivariogram (SV) Regional Dependence Measure
190(11)
5.5.1 SV Philosophy
190(5)
5.5.2 SV Definition
195(4)
5.5.3 SV Limitations
199(2)
5.6 Sample SV
201(2)
5.7 Theoretical SV
203(13)
5.7.1 Simple Nugget SV
207(1)
5.7.2 Linear SV
208(2)
5.7.3 Exponential SV
210(1)
5.7.4 Gaussian SV
210(1)
5.7.5 Quadratic SV
211(1)
5.7.6 Rational Quadratic SV
212(1)
5.7.7 Power SV
212(1)
5.7.8 Wave (Hole Effect) SV
213(2)
5.7.9 Spherical SV
215(1)
5.7.10 Logarithmic SV
215(1)
5.8 Cumulative Semivariogram (CSV)
216(11)
5.8.1 Sample CSV
219(1)
5.8.2 Theoretical CSV Models
220(7)
5.9 Point Cumulative Semivariogram (PCSV)
227(9)
5.10 Spatial Dependence Function (SDF)
236(17)
References
250(3)
6 Spatial Modeling
253(76)
6.1 General
254(1)
6.2 Spatial Estimation of ReV
255(2)
6.3 Optimum Interpolation Model (OIM)
257(18)
6.3.1 Data and Application
262(13)
6.4 Geostatistical Analysis
275(4)
6.4.1 Kriging Technique
276(3)
6.5 Geostatistical Estimator (Kriging)
279(5)
6.5.1 Kriging Methodologies and Advantages
281(3)
6.6 Simple Kriging (SK)
284(7)
6.7 Ordinary Kriging (OK)
291(6)
6.8 Universal Kriging (UK)
297(4)
6.9 Block Kriging (BK)
301(1)
6.10 Triple Diagram Model (TDM)
302(7)
6.11 Regional Rainfall Pattern Description
309(20)
References
326(3)
7 Spatial Simulation
329(76)
7.1 General
330(1)
7.2 3D Autoregressive Model
331(8)
7.2.1 Parameter Estimation
332(3)
7.2.2 2D Uniform Model Parameters
335(4)
7.2.3 Extension to 3D
339(1)
7.3 Rock Quality Designation (RQD) Simulation
339(19)
7.3.1 Independent Intact Lengths
340(7)
7.3.2 Dependent Intact Lengths
347(11)
7.4 ROD and Correlated Intact Length Simulation
358(11)
7.4.1 Proposed Models of Persistence
361(3)
7.4.2 Simulation of Intact Lengths
364(5)
7.5 Autorun Simulation of Porous Material
369(12)
7.5.1 Line Characteristic Function of Porous Medium
370(1)
7.5.2 Autorun Analysis of Sandstone
371(4)
7.5.3 Autorun Modeling of Porous Media
375(6)
7.6 CSV Technique for Identification of Intact Length Correlation Structure
381(12)
7.6.1 Intact Length CSV
383(1)
7.6.2 Theoretical CSV Model
384(9)
7.7 Multi-directional RQD Simulation
393(12)
7.7.1 Fracture Network Model
394(1)
7.7.2 RQD Analysis
395(2)
7.7.3 RQD Simulation Results
397(4)
References
401(4)
Index 405
Prof. Dr. Zekai Sen is a researcher at the Istanbul Technical University, Turkey. His main interests are renewable energy (especially solar energy), hydrology, water resources, hydrogeology, hydrometeorology, hydraulics, philosophy of science, and science history. He has been appointed by the United Nations as a member of the Intergovernmental Panel on Climate Change (IPCC) for research on the effects of climate change. He published more than 200 papers in about 50 scientific journals, and 3 books: Applied Hydrogeology for Scientists and Engineers (1995, CRC Lewis Publishers), Wadi Hydrology (2008, CRC Lewis Publishers), and Solar Energy Fundamentals and Modeling Techniques: Atmosphere, Environment, Climate Change and Renewable Energy (2008, Springer).