Preface |
|
xi | |
|
|
1 | (14) |
|
1.1 Power series solutions |
|
|
2 | (3) |
|
1.2 The gamma and beta functions |
|
|
5 | (1) |
|
|
6 | (4) |
|
1.4 Other special functions |
|
|
10 | (1) |
|
|
11 | (2) |
|
|
13 | (2) |
|
|
15 | (31) |
|
2.1 The gamma and beta functions |
|
|
16 | (3) |
|
2.2 Euler's product and reflection formulas |
|
|
19 | (3) |
|
2.3 Formulas of Legendre and Gauss |
|
|
22 | (2) |
|
2.4 Two characterizations of the gamma function |
|
|
24 | (2) |
|
2.5 Asymptotics of the gamma function |
|
|
26 | (4) |
|
2.6 The psi function and the incomplete gamma function |
|
|
30 | (2) |
|
|
32 | (3) |
|
|
35 | (3) |
|
|
38 | (7) |
|
|
45 | (1) |
|
3 Second-order differential equations |
|
|
46 | (27) |
|
3.1 Transformations and symmetry |
|
|
47 | (2) |
|
3.2 Existence and uniqueness |
|
|
49 | (3) |
|
3.3 Wronskians, Green's functions, and comparison |
|
|
52 | (3) |
|
3.4 Polynomials as eigenfunctions |
|
|
55 | (5) |
|
3.5 Maxima, minima, and estimates |
|
|
60 | (2) |
|
3.6 Some equations of mathematical physics |
|
|
62 | (4) |
|
3.7 Equations and transformations |
|
|
66 | (2) |
|
|
68 | (3) |
|
|
71 | (2) |
|
4 Orthogonal polynomials on an interval |
|
|
73 | (21) |
|
4.1 Weight functions and orthogonality |
|
|
74 | (4) |
|
4.2 Stieltjes transform and Pade approximants |
|
|
78 | (3) |
|
4.3 Pade approximants and continued fractions |
|
|
81 | (3) |
|
4.4 Generalization: measures |
|
|
84 | (2) |
|
4.5 Favard's theorem and the moment problem |
|
|
86 | (3) |
|
4.6 Asymptotic distribution of zeros |
|
|
89 | (1) |
|
|
90 | (3) |
|
|
93 | (1) |
|
5 The classical orthogonal polynomials |
|
|
94 | (46) |
|
5.1 Classical polynomials: general properties, I |
|
|
94 | (4) |
|
5.2 Classical polynomials: general properties, II |
|
|
98 | (4) |
|
|
102 | (6) |
|
|
108 | (3) |
|
|
111 | (4) |
|
5.6 Legendre and Chebyshev polynomials |
|
|
115 | (5) |
|
5.7 Distribution of zeros and electrostatics |
|
|
120 | (4) |
|
|
124 | (6) |
|
5.9 Functions of the second kind |
|
|
130 | (3) |
|
|
133 | (4) |
|
|
137 | (3) |
|
6 Semi-classical orthogonal polynomials |
|
|
140 | (32) |
|
6.1 Discrete weights and difference operators |
|
|
141 | (5) |
|
6.2 The discrete Rodrigues formula |
|
|
146 | (3) |
|
|
149 | (3) |
|
6.4 Krawtchouk polynomials |
|
|
152 | (3) |
|
|
155 | (3) |
|
6.6 Chebyshev-Hahn polynomials |
|
|
158 | (4) |
|
6.7 Neo-classical polynomials |
|
|
162 | (6) |
|
|
168 | (2) |
|
|
170 | (2) |
|
7 Asymptotics of orthogonal polynomials: two methods |
|
|
172 | (28) |
|
7.1 Approximation away from the real line |
|
|
173 | (2) |
|
7.2 Asymptotics by matching |
|
|
175 | (3) |
|
7.3 The Riemann-Hilbert formulation |
|
|
178 | (1) |
|
7.4 The Riemann-Hilbert problem in the Hermite case, I |
|
|
179 | (6) |
|
7.5 The Riemann-Hilbert problem in the Hermite case, II |
|
|
185 | (7) |
|
|
192 | (4) |
|
|
196 | (2) |
|
|
198 | (2) |
|
8 Confluent hypergeometric functions |
|
|
200 | (23) |
|
|
201 | (3) |
|
8.2 Kummer functions of the second kind |
|
|
204 | (3) |
|
8.3 Solutions when c is an integer |
|
|
207 | (1) |
|
|
208 | (2) |
|
|
210 | (2) |
|
8.6 Parabolic cylinder functions |
|
|
212 | (4) |
|
|
216 | (3) |
|
|
219 | (2) |
|
|
221 | (2) |
|
|
223 | (31) |
|
|
224 | (4) |
|
9.2 Zeros of real cylinder functions |
|
|
228 | (4) |
|
9.3 Integral representations |
|
|
232 | (2) |
|
|
234 | (4) |
|
9.5 Modified Bessel functions |
|
|
238 | (1) |
|
|
239 | (2) |
|
9.7 Fourier transform and Hankel transform |
|
|
241 | (2) |
|
9.8 Integrals of Bessel functions |
|
|
243 | (2) |
|
|
245 | (3) |
|
|
248 | (5) |
|
|
253 | (1) |
|
10 Hypergeometric functions |
|
|
254 | (25) |
|
10.1 Solutions of the hypergeometric equation |
|
|
255 | (3) |
|
10.2 Linear relations of solutions |
|
|
258 | (3) |
|
10.3 Solutions when c is an integer |
|
|
261 | (2) |
|
10.4 Contiguous functions |
|
|
263 | (3) |
|
10.5 Quadratic transformations |
|
|
266 | (3) |
|
10.6 Integral transformations and special values |
|
|
269 | (4) |
|
|
273 | (4) |
|
|
277 | (2) |
|
|
279 | (26) |
|
11.1 Harmonic polynomials and surface harmonics |
|
|
280 | (6) |
|
|
286 | (3) |
|
11.3 Relations among the Legendre functions |
|
|
289 | (4) |
|
11.4 Series expansions and asymptotics |
|
|
293 | (3) |
|
11.5 Associated Legendre functions |
|
|
296 | (3) |
|
11.6 Relations among associated functions |
|
|
299 | (2) |
|
|
301 | (2) |
|
|
303 | (2) |
|
12 Generalized hypergeometric functions; G-functions |
|
|
305 | (25) |
|
12.1 Generalized hypergeometric series |
|
|
305 | (3) |
|
12.2 The generalized hypergeometric equation |
|
|
308 | (4) |
|
|
312 | (7) |
|
12.4 Choices of contour of integration |
|
|
319 | (3) |
|
12.5 Expansions and asymptotics |
|
|
322 | (3) |
|
12.6 The Mellin transform and G-functions |
|
|
325 | (1) |
|
|
326 | (2) |
|
|
328 | (2) |
|
|
330 | (28) |
|
13.1 Hermite and parabolic cylinder functions |
|
|
331 | (2) |
|
13.2 Confluent hypergeometric functions |
|
|
333 | (5) |
|
13.3 Hypergeometric functions and Jacobi polynomials |
|
|
338 | (2) |
|
|
340 | (2) |
|
13.5 Steepest descents and stationary phase |
|
|
342 | (3) |
|
|
345 | (12) |
|
|
357 | (1) |
|
|
358 | (32) |
|
|
359 | (2) |
|
|
361 | (5) |
|
14.3 Jacobi elliptic functions |
|
|
366 | (5) |
|
|
371 | (4) |
|
14.5 Jacobi theta functions and integration |
|
|
375 | (5) |
|
14.6 Weierstrass elliptic functions |
|
|
380 | (3) |
|
|
383 | (5) |
|
|
388 | (2) |
|
15 Painleve transcendents |
|
|
390 | (40) |
|
|
392 | (4) |
|
|
396 | (3) |
|
|
399 | (3) |
|
15.4 Compatibility conditions and Backlund transformations |
|
|
402 | (6) |
|
|
408 | (4) |
|
15.6 Monodromy and isomonodromy |
|
|
412 | (3) |
|
15.7 The inverse problem and the Painleve property |
|
|
415 | (4) |
|
15.8 Asymptotics of PII(0) |
|
|
419 | (5) |
|
|
424 | (4) |
|
|
428 | (2) |
|
Appendix A Complex analysis |
|
|
430 | (7) |
|
A.1 Holomorphic and meromorphic functions |
|
|
430 | (1) |
|
A.2 Cauchy's theorem, the Cauchy integral theorem, and Liouville's theorem |
|
|
431 | (1) |
|
A.3 The residue theorem and counting zeros |
|
|
432 | (2) |
|
A.4 Linear fractional transformations |
|
|
434 | (1) |
|
A.5 Weierstrass factorization theorem |
|
|
434 | (1) |
|
A.6 Cauchy and Stieltjes transformations and the Sokhotski--Plemelj formula |
|
|
435 | (2) |
|
Appendix B Fourier analysis |
|
|
437 | (6) |
|
B.1 Fourier and inverse Fourier transforms |
|
|
437 | (1) |
|
B.2 Proof of Theorem 4.1.5 |
|
|
438 | (1) |
|
B.3 Riemann--Lebesgue lemma |
|
|
439 | (1) |
|
B.4 Fourier series and the Weierstrass approximation theorem |
|
|
440 | (1) |
|
B.5 The Mellin transform and its inverse |
|
|
441 | (2) |
References |
|
443 | (20) |
Author index |
|
463 | (5) |
Notation index |
|
468 | (1) |
Subject index |
|
469 | |