Atjaunināt sīkdatņu piekrišanu

Spectral Analysis on Standard Locally Homogeneous Spaces [Hardback]

  • Formāts: Hardback, 125 pages, height x width: 235x155 mm, 5 Illustrations, color; 5 Illustrations, black and white; Approx. 125 p. 10 illus., 5 illus. in color., 1 Hardback
  • Sērija : Lecture Notes in Mathematics 2367
  • Izdošanas datums: 01-May-2025
  • Izdevniecība: Springer Nature Switzerland AG
  • ISBN-10: 9819619564
  • ISBN-13: 9789819619566
  • Hardback
  • Cena: 91,53 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 107,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
Spectral Analysis on Standard Locally Homogeneous Spaces
  • Formāts: Hardback, 125 pages, height x width: 235x155 mm, 5 Illustrations, color; 5 Illustrations, black and white; Approx. 125 p. 10 illus., 5 illus. in color., 1 Hardback
  • Sērija : Lecture Notes in Mathematics 2367
  • Izdošanas datums: 01-May-2025
  • Izdevniecība: Springer Nature Switzerland AG
  • ISBN-10: 9819619564
  • ISBN-13: 9789819619566
A groundbreaking theory has emerged for spectral analysis of pseudo-Riemannian locally symmetric spaces, extending beyond the traditional Riemannian framework. The theory introduces innovative approaches to global analysis of locally symmetric spaces endowed with an indefinite metric. Breakthrough methods in this area are introduced through the development of the branching theory of infinite-dimensional representations of reductive groups, which is based on geometries with spherical hidden symmetries. The book elucidates the foundational principles of the new theory, incorporating previously inaccessible material in the literature.





The book covers three major topics.





(1) (Theory of Transferring Spectra) It presents a novel theory on transferring spectra along the natural fiber bundle structure of pseudo-Riemannian locally homogeneous spaces over Riemannian locally symmetric spaces.





(2) (Spectral Theory) It explores spectral theory for pseudo-Riemannian locally symmetric spaces, including the proof of the essential self-adjointness of the pseudo-Riemannian Laplacian, spectral decomposition of compactly supported smooth functions, and the Plancherel-type formula.





(3) (Analysis of the Pseudo-Riemannian Laplacian) It establishes the abundance of real analytic joint eigenfunctions and the existence of an infinite L2 spectrum under certain additional conditions.
1 Introduction.- 2 Method of proof.- Part I Generalities.- 3 Reminders:
spectral analysis on spherical homogeneous spaces.- 4 Discrete spectrum of
type I and II.- 5 Dierential operators coming from 𝑳 and from the
fiber 𝑭.- Part II Proof of the theorems of
Chapter 1.- 6 Essential
self-adjointness of the Laplacian.- 7 Transfer of Riemannian eigenfunctions
and spectral decomposition.- 8 Consequences of conditions (A) and (B) on
representations of G and 𝑳.- 9 The maps i𝝉,𝚪 and
p𝝉,𝚪 preserve type I and type II.- 10 Infinite discrete
spectrum of type II.- Part III Representation-theoretic description of the
discrete spectrum.- 11 A conjectural picture.- 12 The discrete spectrum in
terms of group representations.