Preface |
|
ix | |
Preface to the AMS Edition |
|
xi | |
Introduction |
|
1 | (2) |
|
Harmonic Analysis on the Euclidean Plane |
|
|
3 | (4) |
|
Harmonic Analysis on the Hyperbolic Plane |
|
|
7 | (30) |
|
|
7 | (5) |
|
|
12 | (3) |
|
The geodesic polar coordinates |
|
|
15 | (1) |
|
|
16 | (1) |
|
The classification of motions |
|
|
17 | (2) |
|
|
19 | (1) |
|
|
19 | (7) |
|
The invariant integral operators |
|
|
26 | (6) |
|
|
32 | (5) |
|
|
37 | (16) |
|
|
37 | (1) |
|
|
38 | (3) |
|
|
41 | (4) |
|
The double coset decomposition |
|
|
45 | (2) |
|
|
47 | (2) |
|
|
49 | (4) |
|
|
53 | (10) |
|
|
53 | (3) |
|
|
56 | (1) |
|
|
57 | (2) |
|
Fourier expansion of the Eisenstein series |
|
|
59 | (4) |
|
The Spectral Theorem. Discrete Part |
|
|
63 | (8) |
|
The automorphic Laplacian |
|
|
63 | (1) |
|
Invariant integral operators on C(Γ\H) |
|
|
64 | (4) |
|
Spectral resolution of Δ in C(Γ\H) |
|
|
68 | (3) |
|
The Automorphic Green Function |
|
|
71 | (10) |
|
|
71 | (1) |
|
|
72 | (3) |
|
An estimate for the automorphic Green function |
|
|
75 | (1) |
|
Evaluation of some integrals |
|
|
76 | (5) |
|
Analytic Continuation of the Eisenstein Series |
|
|
81 | (14) |
|
The Fredholm equation for the Eisenstein series |
|
|
81 | (3) |
|
The analytic continuation of Ea(z, s) |
|
|
84 | (2) |
|
|
86 | (2) |
|
Poles and residues of the Eisenstein series |
|
|
88 | (7) |
|
The Spectral Theorem. Continuous Part |
|
|
95 | (12) |
|
|
96 | (2) |
|
|
98 | (3) |
|
Spectral decomposition of ε(Γ\H) |
|
|
101 | (3) |
|
Spectral expansion of automorphic kernels |
|
|
104 | (3) |
|
Estimates for the Fourier Coefficients of Maass Forms |
|
|
107 | (14) |
|
|
107 | (2) |
|
The Rankin--Selberg L-function |
|
|
109 | (1) |
|
|
110 | (3) |
|
Spectral mean-value estimates |
|
|
113 | (3) |
|
The case of congruence groups |
|
|
116 | (5) |
|
Spectral Theory of Kloosterman Sums |
|
|
121 | (14) |
|
|
121 | (1) |
|
Analytic continuation of Zs(m,n) |
|
|
122 | (3) |
|
Bruggeman--Kuznetsov formula |
|
|
125 | (3) |
|
|
128 | (3) |
|
|
131 | (4) |
|
|
135 | (22) |
|
|
135 | (4) |
|
Computing the spectral trace |
|
|
139 | (3) |
|
Computing the trace for parabolic classes |
|
|
142 | (3) |
|
Computing the trace for the identity motion |
|
|
145 | (1) |
|
Computing the trace for hyperbolic classes |
|
|
146 | (1) |
|
Computing the trace for elliptic classes |
|
|
147 | (3) |
|
|
150 | (2) |
|
The Selberg zeta-function |
|
|
152 | (2) |
|
Asymptotic law for the length of closed geodesics |
|
|
154 | (3) |
|
The Distribution of Eigenvalues |
|
|
157 | (14) |
|
|
157 | (5) |
|
The residual spectrum and the scattering matrix |
|
|
162 | (2) |
|
|
164 | (4) |
|
|
168 | (3) |
|
Hyperbolic Lattice-Point Problems |
|
|
171 | (6) |
|
Spectral Bounds for Cusp Forms |
|
|
177 | (8) |
|
|
177 | (1) |
|
|
178 | (2) |
|
Applying the Hecke operator |
|
|
180 | (1) |
|
Constructing an amplifier |
|
|
181 | (2) |
|
The ergodicity conjecture |
|
|
183 | (2) |
Appendix A. Classical Analysis |
|
185 | (12) |
|
A.1. Self-adjoint operators |
|
|
185 | (2) |
|
|
187 | (2) |
|
A.3. The Hilbert--Schmidt integral operators |
|
|
189 | (1) |
|
A.4. The Fredholm integral equations |
|
|
190 | (4) |
|
A.5. Green function of a differential equation |
|
|
194 | (3) |
Appendix B. Special Functions |
|
197 | (12) |
|
|
197 | (2) |
|
B.2. The hypergeometric functions |
|
|
199 | (1) |
|
B.3. The Legendre functions |
|
|
200 | (2) |
|
B.4. The Bessel functions |
|
|
202 | (3) |
|
|
205 | (4) |
References |
|
209 | (6) |
Subject Index |
|
215 | (4) |
Notation Index |
|
219 | |