Atjaunināt sīkdatņu piekrišanu

E-grāmata: Spectral Methods of Automorphic Forms

  • Formāts: 220 pages
  • Sērija : Graduate Studies in Mathematics
  • Izdošanas datums: 02-Jan-2015
  • Izdevniecība: American Mathematical Society
  • ISBN-13: 9781470417987
  • Formāts - PDF+DRM
  • Cena: 76,64 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 220 pages
  • Sērija : Graduate Studies in Mathematics
  • Izdošanas datums: 02-Jan-2015
  • Izdevniecība: American Mathematical Society
  • ISBN-13: 9781470417987

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Automorphic forms are one of the central topics of analytic number theory. In fact, they sit at the confluence of analysis, algebra, geometry, and number theory. In this book, Henryk Iwaniec once again displays his penetrating insight, powerful analytic techniques, and lucid writing style. The first edition of this volume was an underground classic, both as a textbook and as a respected source for results, ideas, and references. The book's reputation sparked a growing interest in the mathematical community to bring it back into print. The AMS has answered that call with the publication of this second edition. In the book, Iwaniec treats the spectral theory of automorphic forms as the study of the space $L^2 (H\Gamma)$, where $H$ is the upper half-plane and $\Gamma$ is a discrete subgroup of volume-preserving transformations of $H$.He combines various techniques from analytic number theory. Among the topics discussed are Eisenstein series, estimates for Fourier coefficients of automorphic forms, the theory of Kloosterman sums, the Selberg trace formula, and the theory of small eigenvalues. Henryk Iwaniec was awarded the 2002 AMS Cole Prize for his fundamental contributions to analytic number theory. Also available from the AMS by H. Iwaniec is ""Topics in Classical Automorphic Forms"", Volume 17 in the ""Graduate Studies in Mathematics"" series. The book is designed for graduate students and researchers working in analytic number theory.
Preface ix
Preface to the AMS Edition xi
Introduction 1(2)
Harmonic Analysis on the Euclidean Plane
3(4)
Harmonic Analysis on the Hyperbolic Plane
7(30)
The upper half-plane
7(5)
H as a homogeneous space
12(3)
The geodesic polar coordinates
15(1)
Group decompositions
16(1)
The classification of motions
17(2)
The Laplace operator
19(1)
Eigenfunctions of Δ
19(7)
The invariant integral operators
26(6)
The Green function on H
32(5)
Fuchsian Groups
37(16)
Definitions
37(1)
Fundamental domains
38(3)
Basic examples
41(4)
The double coset decomposition
45(2)
Kloosterman sums
47(2)
Basic estimates
49(4)
Automorphic Forms
53(10)
Introduction
53(3)
The Eisenstein series
56(1)
Cusp forms
57(2)
Fourier expansion of the Eisenstein series
59(4)
The Spectral Theorem. Discrete Part
63(8)
The automorphic Laplacian
63(1)
Invariant integral operators on C(Γ\H)
64(4)
Spectral resolution of Δ in C(Γ\H)
68(3)
The Automorphic Green Function
71(10)
Introduction
71(1)
The Fourier expansion
72(3)
An estimate for the automorphic Green function
75(1)
Evaluation of some integrals
76(5)
Analytic Continuation of the Eisenstein Series
81(14)
The Fredholm equation for the Eisenstein series
81(3)
The analytic continuation of Ea(z, s)
84(2)
The functional equations
86(2)
Poles and residues of the Eisenstein series
88(7)
The Spectral Theorem. Continuous Part
95(12)
The Eisenstein transform
96(2)
Bessel's inequality
98(3)
Spectral decomposition of ε(Γ\H)
101(3)
Spectral expansion of automorphic kernels
104(3)
Estimates for the Fourier Coefficients of Maass Forms
107(14)
Introduction
107(2)
The Rankin--Selberg L-function
109(1)
Bounds for linear forms
110(3)
Spectral mean-value estimates
113(3)
The case of congruence groups
116(5)
Spectral Theory of Kloosterman Sums
121(14)
Introduction
121(1)
Analytic continuation of Zs(m,n)
122(3)
Bruggeman--Kuznetsov formula
125(3)
Kloosterman sums formula
128(3)
Petersson's formulas
131(4)
The Trace Formula
135(22)
Introduction
135(4)
Computing the spectral trace
139(3)
Computing the trace for parabolic classes
142(3)
Computing the trace for the identity motion
145(1)
Computing the trace for hyperbolic classes
146(1)
Computing the trace for elliptic classes
147(3)
Trace formulas
150(2)
The Selberg zeta-function
152(2)
Asymptotic law for the length of closed geodesics
154(3)
The Distribution of Eigenvalues
157(14)
Weyl's law
157(5)
The residual spectrum and the scattering matrix
162(2)
Small eigenvalues
164(4)
Density theorems
168(3)
Hyperbolic Lattice-Point Problems
171(6)
Spectral Bounds for Cusp Forms
177(8)
Introduction
177(1)
Standard bounds
178(2)
Applying the Hecke operator
180(1)
Constructing an amplifier
181(2)
The ergodicity conjecture
183(2)
Appendix A. Classical Analysis 185(12)
A.1. Self-adjoint operators
185(2)
A.2. Matrix analysis
187(2)
A.3. The Hilbert--Schmidt integral operators
189(1)
A.4. The Fredholm integral equations
190(4)
A.5. Green function of a differential equation
194(3)
Appendix B. Special Functions 197(12)
B.1. The gamma function
197(2)
B.2. The hypergeometric functions
199(1)
B.3. The Legendre functions
200(2)
B.4. The Bessel functions
202(3)
B.5. Inversion formulas
205(4)
References 209(6)
Subject Index 215(4)
Notation Index 219