Atjaunināt sīkdatņu piekrišanu

Spectral Numerical Weather Prediction Models [Mīkstie vāki]

  • Formāts: Paperback / softback, 523 pages, height x width x depth: 251x175x27 mm, weight: 930 g, Illustrations
  • Izdošanas datums: 30-Dec-2011
  • Izdevniecība: Society for Industrial & Applied Mathematics,U.S.
  • ISBN-10: 1611971985
  • ISBN-13: 9781611971989
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 178,26 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 523 pages, height x width x depth: 251x175x27 mm, weight: 930 g, Illustrations
  • Izdošanas datums: 30-Dec-2011
  • Izdevniecība: Society for Industrial & Applied Mathematics,U.S.
  • ISBN-10: 1611971985
  • ISBN-13: 9781611971989
Citas grāmatas par šo tēmu:
This book provides a comprehensive overview of numerical weather prediction (NWP) focusing on the application of the spectral method in NWP models. The author illustrates the use of the spectral method in theory as well as in its application to building a full prototypical spectral NWP model, from the formulation of continuous model equations through development of their discretized forms to coded statements of the model.

The author describes the implementation of a specific model PEAK (Primitive-Equation Atmospheric Research Model Kernel) to illustrate the steps needed to construct a global spectral NWP model. The book brings together all the spectral, time, and vertical discretization aspects relevant for such a model.

Spectral Numerical Weather Prediction Models provides readers with:

Information necessary to construct spectral NWP models. A self-contained, well-documented, coded spectral NWP model. Theoretical and practical exercises, some of which include solutions.
Preface xi
Acknowledgments xvii
List of Figures
xxi
List of Tables
xxiii
List of Algorithms
xxv
I Atmospheric Dynamical Models
1(166)
1 Introduction
3(10)
1.1 Introduction---The Spectral Method
3(6)
1.2 A History of Numerical Weather Prediction
9(4)
2 Governing Atmospheric Dynamics
13(32)
2.1 Introductory Comments
13(1)
2.2 Global Atmospheric Energetics
14(5)
2.3 The Complete Governing Equations
19(5)
2.4 Energy Conservation
24(1)
2.5 Potential Vorticity
25(6)
2.6 Angular Momentum
31(10)
2.7 Exercises
41(4)
3 The Primitive Equations
45(30)
3.1 Introductory Comments
45(1)
3.2 The Hydrostatic Primitive Equations
46(3)
3.3 Potential Vorticity in the HPEs
49(4)
3.4 Angular Momentum
53(1)
3.5 The HPEs with Vertical Coordinate σ
53(7)
3.6 Vorticity and Divergence Equations
60(6)
3.7 Streamfunction and Velocity Potential
66(1)
3.8 The Thermodynamic Equation
67(1)
3.9 Summary of PEAK Model Equations
67(2)
3.10 Conservation of Total Energy
69(3)
3.11 Exercises
72(3)
4 The Shallow-Water Model
75(28)
4.1 Introductory Comments
75(3)
4.2 Formulation of the Shallow-Water Model
78(4)
4.3 Energetics of the SWM
82(1)
4.4 Angular Momentum in the SWM
83(1)
4.5 Vorticity and Divergence Equations
84(2)
4.6 The SWM on the Sphere
86(2)
4.7 Nonlinear Balance of Mass and Wind
88(7)
4.8 A Stationary Solution on the Sphere
95(4)
4.9 Exercises
99(4)
5 The Barotropic Vorticity Equation
103(12)
5.1 Introductory Comments
103(1)
5.2 The Nondivergent Barotropic Model
104(1)
5.3 The Barotropic Model in Spherical Geometry
105(3)
5.4 Rossby-Haurwitz Waves
108(2)
5.5 Barotropic Instability---By Example
110(3)
5.6 Exercises
113(2)
6 Balanced Flow
115(52)
6.1 Introductory Comments
115(2)
6.2 QG Scaling in the SWM
117(9)
6.3 Baroclinic QG Flow
126(5)
6.4 Jet Stream Dynamics
131(14)
6.5 Hydrodynamic Flow Instability
145(10)
6.6 Spectral Vertical Normal-Mode Decomposition
155(8)
6.7 Exercises
163(4)
II Spectral Numerical Models
167(234)
7 The Spectral Method
169(88)
7.1 Introductory Comments
169(1)
7.2 Series-Expansion Methods
170(6)
7.3 The Spectral Method in NWP
176(6)
7.4 Galerkin and Collocation---Linear Advection
182(3)
7.5 Galerkin and Collocation---Nonlinear Advection
185(2)
7.6 Galerkin and Collocation---Discussion
187(8)
7.7 The Transform Method
195(2)
7.8 Galerkin and Collocation---Burgers Equation
197(20)
7.9 Aliasing---A Bit of Theory
217(6)
7.10 Aliasing---The Simplest Example
223(5)
7.11 Spectral Expansion in NWP Models
228(4)
7.12 Routine sp2gg and the Collocation Grid
232(5)
7.13 Routine gg2sp
237(8)
7.14 The Transform Method in the BVE
245(5)
7.15 Spectral Isotropic Correlations
250(5)
7.16 Exercises
255(2)
8 Vertical Discretization
257(18)
8.1 Introductory Comments
257(1)
8.2 Vertical Staggering of Variables
258(2)
8.3 Formulation of the Vertical Discretization
260(9)
8.4 Energetics of the Vertical Discretization
269(3)
8.5 Exercises
272(3)
9 Time Integration
275(22)
9.1 Introductory Comments
275(1)
9.2 Gravity-Wave Separation
276(7)
9.3 Semi-Implicit Time Differencing
283(7)
9.4 Leapfrog Time Stepping
290(4)
9.5 Exercises
294(3)
10 Code Structure of PEAK
297(46)
10.1 Introductory Comments
297(5)
10.2 Numerical Implementation of PEAK
302(7)
10.3 Description of Standard PEAK Routines
309(29)
10.4 Spectral-Transform Routines
338(1)
10.5 Numerical-Recipes-Based Routines
339(1)
10.6 Numerical Algorithms Group (NAG) Routines
340(1)
10.7 Exercises
340(3)
11 Experimentation with PEAK
343(28)
11.1 Introductory Comments
343(1)
11.2 Setting Up PEAK
344(3)
11.3 PEAK in NAG-Using Mode (NAGM)
347(2)
11.4 Validation of PEAK
349(15)
11.5 Exercises
364(7)
12 Barotropic PEAK Configurations
371(30)
12.1 Introductory Comments
371(1)
12.2 The Spectral BVE Model in PEAK
372(9)
12.3 The Spectral SWM in PEAK
381(18)
12.4 Exercises
399(2)
III Appendices
401(2)
A Tensor Analysis
403(30)
A.1 Introductory Comments
403(1)
A.2 Vector Calculus
404(1)
A.3 Orthogonal Curvilinear Coordinates
405(6)
A.4 Standard Spherical Polar Coordinates
411(2)
A.5 Modified Spherical Polar Coordinates
413(1)
A.6 Gradient of a Scalar
414(1)
A.7 The Curl
415(1)
A.8 The Divergence
416(1)
A.9 The Laplacian
417(1)
A.10 The Physical Components of a Vector
418(2)
A.11 Advection of a Scalar
420(1)
A.12 The Helmholtz Decomposition
420(1)
A.13 Generalized Mass Continuity
421(2)
A.14 Generalized Vertical Velocity
423(1)
A.15 The HPE Material Derivative
424(1)
A.16 Solutions to Selected Exercises
425(8)
B Spectral Basis Functions
433(8)
B.1 Associated Legendre Functions
433(2)
B.2 Tabulated Legendre Polynomials
435(1)
B.3 Computation of Pmn(μ) in Routine plgndr2
435(3)
B.4 Spherical Harmonics
438(1)
B.5 Gaussian Quadrature
438(3)
C The PEAK Model Code
441(32)
C.1 The PEAK Code
441(22)
C.2 Spectral Transform Routines
463(1)
C.3 Numerical-Recipes-Based Routines
464(2)
C.4 Spectral Transform Routines with NAG
466(2)
C.5 Normal-Mode Computations Code
468(1)
C.6 Burgers-Equation Code
469(2)
C.7 The Fourier-Matrix Code
471(2)
Afterword 473(2)
Bibliography 475(18)
Index 493
Martin Ehrendorfer has worked on atmospheric dynamics and numerical models for more than two decades at the University of Vienna, the University of Innsbruck, the University of Reading, the National Centre for Atmospheric Research and the European Centre for Medium-Range Weather Forecasts.