Atjaunināt sīkdatņu piekrišanu

E-grāmata: Spectroscopic Techniques and Hindered Molecular Motion

  • Formāts: 161 pages
  • Izdošanas datums: 13-Oct-2011
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781439870846
  • Formāts - PDF+DRM
  • Cena: 77,63 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 161 pages
  • Izdošanas datums: 13-Oct-2011
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781439870846

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Spectroscopic Techniques and Hindered Molecular Motion presents a united, theoretical approach to studying classical local thermal motion of small molecules and molecular fragments in crystals by spectroscopic techniques. Mono- and polycrystalline case studies demonstrate performance validity.





The book focuses on small molecules and molecular fragments, such as N2, HCl, CO2, CH4, H2O, NH4, BeF4, NH3, CH2, CH3, C6H6, SF6, and other symmetrical atomic formations, which exhibit local hindered motion in molecular condensed media: molecular and ionic crystals, molecular liquids, liquid crystals, polymeric solids, and biological objects. It reviews the state of studying the hindered molecular motion (HMM) phenomenon and the experimental works on the basis of the latest theoretical research.





Case Studies



















Physical models of hindered molecular motion





General solution of the stochastic problem for the hindered molecular motion in crystals





Formulae of the angular autocorrelation function symmetrized on the crystallographic point symmetry groups





Formulae of the spectral line shapes concerning the dielectric, infrared, Raman, nuclear magnetic relaxation, and neutron scattering spectroscopy in the presence of the hindered molecular motion





Experimental probation of the theoretical outcomes





Proton relaxation in three-atomic molecular fragments undergoing axial symmetry hindered motion





Structural distortion in the ordered phase of crystalline ammonium chloride











Organic compounds, polymers, pharmaceutical products, and biological systems consist of the molecular fragments, which possess rotational or conformational degrees of freedom or an atomic exchange within the fragme
Preface vii
Acknowledgments ix
Introduction xi
About the author xv
Chapter 1 Fundamentals of the theory of hindered molecular motion
1(8)
1.1 Problem of hindered molecular motion
1(2)
1.2 Basis of the angular autocorrelation function technique
3(3)
1.3 Autocorrelation functions adapted to the RD and FAJ models
6(3)
Chapter 2 Solution of the stochastic problem for the extended angular jump model
9(12)
2.1 Description of the extended angular jump model
9(4)
2.2 Solution of the stochastic problem
13(8)
Chapter 3 Autocorrelation functions adapted to the extended angular jump model
21(34)
3.1 General form of the autocorrelation functions
21(3)
3.2 Autocorrelation functions of the first rank
24(20)
3.2.1 Point symmetry groups of the cubic systems O and T
32(2)
3.2.2 Point groups of the axial symmetry Cn (n = 3,4,6)
34(4)
3.2.3 Point symmetry groups Dn (n = 3,4,6)
38(2)
3.2.4 Point symmetry group D2
40(2)
3.2.5 Point symmetry group C2
42(2)
3.3 Autocorrelation functions of the arbitrary rank
44(8)
3.4 Discussion
52(3)
Chapter 4 Dielectric and optical spectroscopy applications
55(22)
4.1 Frequency domain dielectric spectroscopy
55(5)
4.2 Shape of polarized infrared absorption spectroscopy lines
60(4)
4.3 Line shape of Rayleigh and Raman light scattering
64(5)
4.4 Discussion and comparison with the experiment
69(8)
Chapter 5 Nuclear magnetic resonance spin-lattice relaxation applications
77(22)
5.1 Generality of the nuclear magnetic resonance relaxation
77(2)
5.2 Relaxation through the motion adapted to the cubic symmetry groups
79(3)
5.3 Proton relaxation in crystalline ammonium chloride
82(8)
5.3.1 Preamble
82(1)
5.3.2 Slow-motion regime of ammonium cations
83(3)
5.3.3 Fast-motion regime of ammonium cations
86(1)
5.3.4 Notes on the ammonium reorientation probabilities
87(1)
5.3.5 Motion and site symmetry of ammonium cations
88(2)
5.3.6 Relaxation of protons and deuterons in powder ammonium chloride
90(1)
5.4 Proton relaxation in three-atomic molecular fragments undergoing axial symmetry hindered motion
90(9)
Chapter 6 Incoherent neutron scattering applications
99(24)
6.1 Preamble
99(6)
6.2 Basis of the theory of incoherent neutron scattering
105(2)
6.3 Incoherent neutron scattering function adapted to the EAJ model
107(3)
6.4 Discussion and comparison with the experiment
110(13)
6.4.1 Theoretical outcomes
110(5)
6.4.2 Experimental applications
115(1)
6.4.2.1 Rubidium hydrosulphide RbSH
115(2)
6.4.2.2 Zinc tetraamine perchlorate [ Zn(NH3)4] (CI04)2
117(1)
6.4.2.3 Ammonium zinc trifluoride NH4ZnF3
118(5)
References 123(8)
Index 131
Dr. Ferid Bashirov





Education: Ph.D. in Physics of Magnetic Phenomena in 1972 and Doctor of Sciences in Condensed Matter Physics in 2006 at Kazan State University, Russia (later renamed Kazan Federal University)





Professional Activity: Lecturer for General Physics and Chair of the Teaching Laboratory for Electricity and Magnetism at Kazan Federal University, Lecturer for Physics at the University of Oran (Republic of Algeria, 1975-1978), and the University of Conakry (Republic of Guinea, 1998-2010).





Research interest: Dynamical and structural studying of condensed molecular media (both experimental and theoretical) by spectroscopic techniques such as Nuclear Magnetic Resonance Relaxation, Dielectric Relaxation, Incoherent Neutron Scattering, Raman and Infrared Spectroscopy.





Scientific and technical contribution:



















Manufacturing the coherent pulsed NMR-spectrometer of high performance for laboratory purposes





Growing single-crystals from aqueous solution





Discovering the tetragonal distortion of the crystal structure by studying the anisotropic properties of proton magnetic spin-lattice relaxation in the ordered phase of cubic ammonium chloride





Inventing the extended angular jump model for the hindered molecular motion





Developing the theory of the hindered molecular motion united for single crystals, polycrystals and liquids (advanced HMM-theory)





Developing the spectroscopic technique application of the advanced HMM-theory











Publicity:





He took part in International Scientific Meetings: Congress AMPERE-1994 (Kazan, Russia), International Conference on Raman Spectroscopy ICORS-1996 (Pitts burg, Pennsylvania, USA), Nuclear and Electron Relaxation Workshop - 1997 (Piza, Italy), Congress AMPERE-1998 (Berlin, Germany), Collogue AMPERE-1999 (Vilnius, Lithuani