Atjaunināt sīkdatņu piekrišanu

Speech Recognition Using Articulatory and Excitation Source Features 1st ed. 2017 [Mīkstie vāki]

  • Formāts: Paperback / softback, 92 pages, height x width: 235x155 mm, weight: 1708 g, 4 Illustrations, color; 19 Illustrations, black and white; XI, 92 p. 23 illus., 4 illus. in color., 1 Paperback / softback
  • Sērija : SpringerBriefs in Speech Technology
  • Izdošanas datums: 18-Jan-2017
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319492195
  • ISBN-13: 9783319492193
  • Mīkstie vāki
  • Cena: 46,91 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 55,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 92 pages, height x width: 235x155 mm, weight: 1708 g, 4 Illustrations, color; 19 Illustrations, black and white; XI, 92 p. 23 illus., 4 illus. in color., 1 Paperback / softback
  • Sērija : SpringerBriefs in Speech Technology
  • Izdošanas datums: 18-Jan-2017
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319492195
  • ISBN-13: 9783319492193
This book discusses the contribution of articulatory and excitation source information in discriminating sound units. The authors focus on excitation source component of speech -- and the dynamics of various articulators during speech production -- for enhancement of speech recognition (SR) performance. Speech recognition is analyzed for read, extempore, and conversation modes of speech. Five groups of articulatory features (AFs) are explored for speech recognition, in addition to conventional spectral features. Each chapter provides the motivation for exploring the specific feature for SR task, discusses the methods to extract those features, and finally suggests appropriate models to capture the sound unit specific knowledge from the proposed features. The authors close by discussing various combinations of spectral, articulatory and source features, and the desired models to enhance the performance of SR systems.

Introduction.- Literature Review.- Articulatory Features for Phone Recognition.- Excitation Source Features for Phone Recognition.- Articulatory and Excitation Source Features for Speech Recognition in Read, Extempore and Conversation Modes.- Conclusion.- Appendix A: MFCC Features.- Appendix B: Pattern Recognition Models.
Introduction.- Literature Review.- Articulatory Features for Phone
Recognition.- Excitation Source Features for Phone Recognition.- Articulatory
and Excitation Source Features for Speech Recognition in Read, Extempore and
Conversation Modes.- Conclusion.- Appendix A: MFCC Features.- Appendix B:
Pattern Recognition Models.
K. Sreenivasa Rao is an Associate Professor at IIT Kharagpur. He has published seven books with Springer. He published 55 Journal publications, 25 book chapters and 115 conference publications.