Atjaunināt sīkdatņu piekrišanu

E-grāmata: Sphingolipids in Cancer

Volume editor (Director of Lipidomics Facility, Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA), Volume editor (Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cance)
  • Formāts: EPUB+DRM
  • Sērija : Advances in Cancer Research
  • Izdošanas datums: 27-Jul-2018
  • Izdevniecība: Academic Press Inc
  • Valoda: eng
  • ISBN-13: 9780128142240
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 156,48 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Advances in Cancer Research
  • Izdošanas datums: 27-Jul-2018
  • Izdevniecība: Academic Press Inc
  • Valoda: eng
  • ISBN-13: 9780128142240
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Sphingolipids in Cancer, Volume 140, the latest release in the Advances in Cancer Research series, provides invaluable information on the exciting and fast-moving field of cancer research. Topics discussed in this updated volume include Mechanisms of ceramide-dependent cancer cell death, Sphingolipids as regulators of autophagy and endocytic trafficking, The role and function of sphingomyelin biosynthesis in the development of cancer, Neutral sphingomyelinases in cancer: Friend or foe , Sphingolipid rendezvous at the crossroad of NAFLD and senescence, Ceramide signaling and p53 pathways, Sphingolipid regulation of RNA Biology in cancer phenotypes, The role of ceramide-1-phosphate in tumor cell survival and dissemination, and more.

  • Provides information on cancer research, with this release focusing on sphingolipids
  • Offers outstanding and original reviews on a range of cancer research topics
  • Serves as an indispensable reference for researchers and students alike
Contributors xi
Foreword xv
Preface xix
1 Mechanisms of Ceramide-Dependent Cancer Cell Death
1(26)
Rose Nganga
Natalia Oleinik
Besim Ogretmen
1 Introduction
2(1)
2 Sphingolipid Metabolism and Cancer
3(7)
3 Ceramide in Cancer Cell Death
10(3)
4 Sphingolipid Metabolism and Anticancer Therapy
13(2)
5 Discussion
15(12)
Acknowledgments
17(1)
References
17(8)
Further Reading
25(2)
2 Sphingolipids as Regulators of Autophagy and Endocytic Trafficking
27(34)
Megan M. Young
Hong-Gang Wang
1 Introduction
28(1)
2 The Molecular Machinery of Autophagy and Regulation by Sphingolipids
29(14)
3 Sphingolipid-Mediated Autophagy in Cancer: Dr. Jekyll and Mr. Hyde
43(5)
4 Conclusion and Future Directions
48(13)
References
49(12)
3 Role and Function of Sphingomyelin Biosynthesis in the Development of Cancer
61(36)
Giovanni D'Angelo
Sitapriya Moorthi
Chiara Luberto
1 Structure and Intracellular Distribution of Sphingomyelin
62(2)
2 The Sphingomyelin Synthase Enzymes
64(1)
3 Functions of the Lipids Regulated by the Sphingomyelin Synthase Reaction
65(8)
4 Regulation of Sphingomyelin Biosynthesis
73(5)
5 Sphingomyelin Synthesis and the Regulation of Cellular Functions That Can Affect Cancer Biology
78(4)
6 Sphingomyelin Synthesis and Cancer
82(4)
7 Conclusions and Unresolved Questions
86(11)
Acknowledgments
87(1)
References
87(10)
4 Neutral Sphingomyelinases in Cancer: Friend or Foe?
97(24)
Christopher J. Clarke
1 The Neutral Sphingomyelinase Family
98(1)
2 Neutral Sphingomyelinases in Tumorigenesis
98(9)
3 The Challenges Ahead
107(5)
4 Concluding Remarks
112(9)
Acknowledgments
113(1)
References
113(8)
5 Ceramide and Exosomes: A Novel Target in Cancer Biology and Therapy
121(34)
Ahmed Elsherbini
Erhard Bieberich
1 Got Exosomes: What's (Really) in Your Prep?
122(4)
2 Why Ceramide in Exosomes? It's All in the Numbers
126(4)
3 The Incredible Journey of a Lipid: Rafting the Extracellular Space on Exosomes
130(4)
4 Exosomes in Cancer: Target Tissue Biohacking and Hijacking of the Immune System
134(6)
5 Conclusions
140(15)
Abbreviations
140(1)
Acknowledgments
141(1)
References
141(14)
6 Sphingolipids at the Crossroads of NAFLD and Senescence
155(36)
Mariana Nikolova-Karakashian
1 Introduction
156(1)
2 Hepatocarcinogenesis: An Outline
157(1)
3 Nonalcoholic Fatty Liver Disease as a Risk Factor for Primary Liver Cancer
158(1)
4 Sphingolipids and the Pathogenesis of Nonalcoholic Fatty Liver Disease
159(2)
5 Overview of Sphingolipid Metabolism and Functions
161(2)
6 Sphingolipids and Simple Steatosis
163(6)
7 Role of Sphingolipids in Nonalcoholic Steatohepatitis
169(2)
8 Advanced Fibrosis and Cirrhosis
171(3)
9 Sphingolipids in Hepatocellular Carcinoma
174(2)
10 The Role of Senescence in Nonalcoholic Fatty Liver Disease
176(5)
11 Conclusions
181(10)
Abbreviations
181(1)
Acknowledgments
182(1)
References
182(9)
7 Ceramide Signaling and p53 Pathways
191(26)
Kristen A. Jeffries
Natalia I. Krupenko
1 Introduction
192(1)
2 Ceramide Signaling---Biology
192(1)
3 Ceramide and Cancer
193(1)
4 p53: The Beginning
194(1)
5 p53 Is a Transcription Factor
195(1)
6 p53 as a Metabolic Regulator
196(2)
7 p53 in Tumor Suppression
198(1)
8 Mutant p53 Function
198(2)
9 p53 and Ceramide Pathways
200(2)
10 Activation of p53 by Ceramide
202(1)
11 Activation of Other Genes by Ceramide
203(1)
12 Ceramide Signaling: Mechanisms
204(3)
13 Conclusions
207(10)
References
208(9)
8 The Role of Ceramide 1-Phosphate in Tumor Cell Survival and Dissemination
217(18)
Antonio Gomez-Munoz
1 Introduction
217(4)
2 Regulation of Cell Proliferation by Ceramide 1-Phosphate
221(1)
3 Regulation of Cell Death and Survival by Ceramide 1-Phosphate
222(3)
4 Regulation of Cell Migration and Invasion by Ceramide 1-Phosphate
225(3)
5 Implication of Ceramide 1-Phosphate in Inflammatory Responses
228(1)
6 Concluding Remarks
229(6)
Acknowledgments
229(1)
Appendix
230(1)
References
230(5)
9 The Onus of Sphingolipid Enzymes in Cancer Drug Resistance
235(30)
Samy A.F. Morad
Myles C. Cabot
1 Etude on Chemotherapy Resistance
236(3)
2 A Prelude to Sphingolipid Metabolism
239(2)
3 In the Beginning
241(2)
4 Glucosylceramide Synthase---Culpability (or Not) in Cancer Cell Resistance to Chemotherapy
243(5)
5 The Role of GCS in Chemotherapy Resistance---Basso Profundo or Diminuendo?
248(2)
6 Acid Ceramidase and Chemotherapy Resistance
250(1)
7 SPHK1, SPHK2, and Sphingosine 1-Phosphate in Chemotherapy Resistance
251(2)
8 Cytarabine and Daunorubicin Selection Pressure in AML Cells Upregulates a Trio of SL Enzymes, and P-gp, of Course
253(2)
9 Coda
255(10)
References
255(10)
10 Interdiction of Sphingolipid Metabolism Revisited: Focus on Prostate Cancer
265(30)
Christina Voelkel-Johnson
James S. Norris
Shai White-Gilbertson
1 Introduction
266(1)
2 Sphingolipid Enzymes
267(6)
3 Sphingolipid Enzymes as Targets in Prostate Cancer
273(11)
4 Escape From Therapeutic Targeting
284(3)
5 Conclusions
287(8)
Acknowledgments
287(1)
References
287(8)
11 Targeting Sphingosine Kinases for the Treatment of Cancer
295(32)
Clayton S. Lewis
Christina Voelkel-Johnson
Charles D. Smith
1 Potential Drug Targets in the Sphingolipid Metabolism Pathway
295(3)
2 Sphingosine Kinases as Targets for Anticancer Drugs
298(5)
3 Sphingosine Kinase Inhibitors
303(11)
4 Conclusions
314(13)
Acknowledgments
314(1)
References
314(13)
12 Novel Sphingolipid-Based Cancer Therapeutics in the Personalized Medicine Era
327(40)
Jeremy Shaw
Pedro Costa-Pinheiro
Logan Patterson
Kelly Drews
Sarah Spiegel
Mark Kester
1 Effects of Chemo-and Radiation Therapies on Sphingolipids
328(8)
2 Current Landscape of Inhibitors of Sphingolipid Metabolism
336(6)
3 Deliverable and Clinically Relevant Sphingolipid-Based Drugs for Cancer
342(4)
4 Sphingolipids Synergize With Chemotherapeutics
346(4)
5 Conclusion
350(17)
Acknowledgments
351(1)
References
351(16)
13 Side Effects in Cancer Therapy: Are Sphingolipids to Blame?
367
Falak Patel
Stefka D. Spassieva
1 Introduction
368(2)
2 Sphingolipids and Chemotherapy-Induced Peripheral Neuropathy
370(6)
3 Ceramide in Chemotherapy or Radiation Therapy-Induced Female Infertility
376(2)
4 Antiganglioside Immunotherapy Side Effects
378(3)
5 Concluding Remarks
381
References
382
Professor Charles E. Chalfant heads up the Chalfant Laboratory and is the director of the Lipidomic Facility at Virgina Commonwealth University. The Chalfant laboratory is currently focused on two major areas of cell signaling and human pathophysiologies: 1) lipid and oncogenic regulation of alternative splicing; and 2) the regulation of eicosanoid synthesis in inflammation and cancer. Paul B. Fisher, MPh, PhD, FNAI, Professor and Chairman, Department of Human and Molecular Genetics, Director, VCU Institute of Molecular Medicine Thelma Newmeyer Corman Chair in Cancer Research in the VCU Massey Cancer Center, VCU, School of Medicine, Richmond, VA, and Emeritus Professor, Columbia University, College of Physicians & Surgeons, New York, NY. Dr. Fisher is among the top 10% of NIH funded investigators over the past 35-years, published approximately 625 papers and reviews, and has 55 issued patents. He pioneered novel gene/discovery approaches (subtraction hybridization), developed innovative therapeutic approaches (Cancer Terminator Viruses), presented numerous named and distinguished lectures, founded several start-up companies, was Virginia Outstanding Scientist of 2014 and elected to the National Academy of Inventors in 2018. Dr. Fisher is a prominent nationally and internationally recognized cancer research scientist focusing on understanding the molecular and biochemical basis of cancer development and progression to metastasis and using this garnered information to develop innovative approaches for diagnosing and treating cancer. He discovered and patented novel genes and gene promoters relevant to cancer growth control, differentiation and apoptosis. His discoveries include the first cloning of p21 (CDK inhibitor), human polynucleotide phosphorylase, mda-9/syntenin (a pro-metastatic gene), mda-5 and mda-7/IL-24, which has shown promising clinical activity in Phase I/II clinical trials in patients with advanced cancers. Dr. Fisher alsohas a documented track record as a successful seasoned entrepreneur. He was Founder and Director of GenQuest Incorporated, a functional genomics company, which merged with Corixa Corporation in 1998, traded on NASDAQ and was acquired by GlaxoSmithKline in 2006. He discovered the cancer-specific PEG-Prom, which is the core technology of Cancer Targeting Systems (CTS, Inc.), a Virginia/Maryland-based company (at Johns Hopkins Medical Center) focusing on imaging and therapy (theranostics”) of metastatic cancer (2014) by Drs. Fisher and Martin G. Pomper. He co-founded InVaMet Therapeutics (IVMT) and InterLeukin Combinatorial Therapies (ILCT) with Dr. Webster K. Cavenee (UCSD) (2017/2018).