Atjaunināt sīkdatņu piekrišanu

E-grāmata: Spin Wave Confinement: Propagating Waves, Second Edition

Edited by (University of Munster, Germany)
  • Formāts: 448 pages
  • Izdošanas datums: 07-Sep-2017
  • Izdevniecība: Pan Stanford Publishing Pte Ltd
  • ISBN-13: 9781351617215
  • Formāts - PDF+DRM
  • Cena: 174,07 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: 448 pages
  • Izdošanas datums: 07-Sep-2017
  • Izdevniecība: Pan Stanford Publishing Pte Ltd
  • ISBN-13: 9781351617215

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Since the publication of the first edition of Spin-Wave Confinement, the magnetic community’s interest in dynamic excitations in magnetic systems of reduced dimensions has been increasing. Although the concept of spin waves and their quanta (magnons) as propagating excitation of magnetic media was introduced more than 80 years ago, this field has been repeatedly bringing us fascinating new physical phenomena. The successful development of magnonics as an emerging subfield of spintronics, which considers confined spin waves as a basis for smaller, faster, more robust, and more power-efficient electronic devices, inevitably demands reduction in the sizes and dimensions of the magnetic systems being studied.

The unique features of magnons, including the possibility of carrying spin information over relatively long distances, the possibility of achieving submicrometer wavelength at microwave frequencies, and controllability by electronic signal via magnetic fields, make magnonic devices distinctively suited for implementation of novel integrated electronic schemes characterized by high speed, low power consumption, and extended functionalities.

Edited by S. O. Demokritov, a prominent magnonics researcher who has successfully collected the results of cutting-edge research by almost all main players in the field, this book is for everyone involved in nanotechnology, spintronics, magnonics, and nanomagnetism.

Introduction 1(10)
1 Graded Magnonic Index and Spin Wave Fano Resonances in Magnetic Structures: Excite, Direct, Capture 11(36)
V.V. Kruglyak
C.S. Davies
Y. Au
F.B. Mushenok
G. Hrkac
N.J. Whitehead
S.A.R. Horsley
T.G. Philbin
V.D. Poimanov
R. Dost
D.A. Allwood
B.J. Inkson
A.N. Kuchko
1.1 Introduction
11(4)
1.2 Spin Wave Dispersion
15(3)
1.3 Spin Wave Excitation
18(7)
1.4 Spin Wave Steering
25(6)
1.5 Spin Wave Output
31(1)
1.6 Spin Wave Control and Magnonic Devices
32(5)
1.7 Conclusions and Outlook
37(10)
2 Coupled Spin Waves in Magnonic Waveguides 47(30)
Yu. P Sharaevsky
A.V. Sadovnikov
E.N. Beginin
M.A. Morozova
S.E. Sheshukova
A. Yu. Sharaevskaya
S.V. Grishin
D.V. Romanenko
S.A. Nikitov
2.1 Introduction
47(1)
2.2 Theoretical Approach
48(3)
2.3 Spin Waves in Coupled Magnetic Stripes
51(5)
2.4 Nonlinear Spin Wave Coupling in Magnonic Crystals
56(4)
2.5 Multilayer Magnonic Crystals
60(7)
2.6 Frequency-Selective Tunable Spin Wave Channeling
67(5)
2.7 Conclusions
72(5)
3 Tuning of the Spin Wave Band Structure in Nanostructured Iron/Permalloy Nanowire Arrays 77(22)
G. Gubbiotti
S. Tacchi
R. Silvani
M. Madami
G. Carlotti
A.O. Adeyeye
M. Kostylev
3.1 Introduction
78(2)
3.2 Sample Fabrication and Brillouin Light Scattering Measurements
80(3)
3.3 Micromagnetic Simulations
83(1)
3.4 Results and Discussion
84(7)
3.4.1 Spin Wave Band Structure and Mode Spatial Profiles for the NWs with Rectangular Cross Section
84(4)
3.4.2 Spin Wave Band Structure and Mode Spatial Profiles for the NWs with L-Shaped Cross Section
88(3)
3.5 Conclusions
91(8)
4 Magnetization Dynamics of Reconfigurable 2D Magnonic Crystals 99(40)
G. Shimon
A. Haldar
A.O. Adeyeye
4.1 Introduction
100(2)
4.2 Experiments and Simulations
102(6)
4.2.1 Sample Fabrication
102(2)
4.2.2 Ferromagnetic Resonance Spectroscopy
104(1)
4.2.3 Microfocused Brillouin Light Scattering Spectroscopy
105(2)
4.2.4 Micromagnetic Simulations
107(1)
4.3 Coupled Nanodisks
108(10)
4.3.1 Effect of Interdisk Separations
108(6)
4.3.1.1 BLS spectra
109(2)
4.3.1.2 Simulated spectra
111(1)
4.3.1.3 2D mode profiles
111(2)
4.3.1.4 Dipolar field estimation
113(1)
4.3.2 Configurational Anisotropy
114(4)
4.3.2.1 Resonant spectra and 2D mode profiles
115(2)
4.3.2.2 Dipolar field models and estimation
117(1)
4.4 Reconfigurable Magnetization Dynamics
118(11)
4.4.1 Rhomboid Nanomagnets
119(2)
4.4.2 Two-or Three-Coupled Rhomboid Nanomagnets
121(3)
4.4.3 2D Magnonic Crystals
124(20)
4.4.3.1 Synthetic antiferromagnets
124(2)
4.4.3.2 Synthetic ferrimagnets
126(3)
4.5 Summary
129(10)
5 Spin Wave Optics in Patterned Garnet 139(32)
Ryszard Gieniusz
Andrzej Maziewski
Urszula Guzowska
Pawel Gruszecki
Jaroslaw Klos
Maciej Krawczyk
Alexander Stognij
5.1 Introduction
140(4)
5.2 Spin Waves in Patterned YIG Micrometer Films
144(13)
5.2.1 Experimental Methods and Samples Details
144(1)
5.2.2 Spin Waves Interaction with a Single Antidot in YIG Micrometer-Thick Films
145(4)
5.2.3 Spin Wave Interaction with a Line of Antidots in YIG Micrometer Films
149(3)
5.2.4 Modeling Spin Waves Total Nonreflection Effect
152(4)
5.2.5 Application of Total Nonreflection Effect for Spin Wave Beam Switching
156(1)
5.3 Optics of Spin Waves in Nanometer-Thick YIG Film
157(8)
5.3.1 Reflection of Spin Waves from the Edge of the YIG Thin Film: Goos-Hanchen Effect
157(4)
5.3.2 Molding of Spin Wave Refraction in Two-Dimensional YIG Antidots Lattice
161(13)
5.3.2.1 Angular filtering
162(2)
5.3.2.2 All-angle collimation
164(1)
5.4 Summary
165(6)
6 Spin Waves in Circular and Linear Chains of Discrete Magnetic Elements 171(26)
Yu. N. Barabanenkov
S.A. Osokin
D.V. Kalyabin
S.A. Nikitov
6.1 Introduction
171(3)
6.2 Multiple-Scattering Method
174(7)
6.2.1 Circular Arrays
179(1)
6.2.2 Linear Chains
180(1)
6.3 Radiation Losses
181(6)
6.4 Results
187(5)
6.5 Conclusion
192(5)
7 Magnonic Grating Coupler Effect and Microwave-to-Magnon Transducers for Exchange-Dominated Spin Waves 197(22)
Haiming Yu
Dirk Grundler
7.1 Introduction
197(3)
7.2 Mix-and-Match Lithography for Mesas with Magnonic Grating Couplers
200(2)
7.2.1 Photolithography to Prepare a Film Mesa
200(1)
7.2.2 Electron-Beam Lithography and Lift-Off Processing for Magnetic Nanostructures
201(1)
7.2.3 Integrated Coplanar Waveguide
202(1)
7.3 Antenna Design for Spin Wave Excitation and Detection
202(2)
7.3.1 Coplanar Waveguide
202(2)
7.4 All-Electrical Spin Wave Spectroscopy
204(3)
7.4.1 Scattering Parameters
206(1)
7.4.2 VNA Calibration
206(1)
7.4.3 Measurement Configuration and Data Analysis
207(1)
7.5 Spin Wave Properties Studied by Experiments
207(2)
7.5.1 Spin Wave Group Velocity
207(1)
7.5.2 Decay Length and Nonreciprocity Parameter
208(1)
7.6 Performance of a Spin Wave Grating Coupler
209(6)
7.6.1 Grating Coupler-Induced Spin Wave Modes
211(1)
7.6.2 Towards Omnidirectional Spin Wave Emission
212(1)
7.6.3 Enhanced Magnon Excitation via Resonant Nanodisks
212(1)
7.6.4 Sub-100 nm-Wavelength Spin Waves
213(1)
7.6.5 Angular Dependance of Propagating Grating Coupler Modes
213(2)
7.7 Conclusions and Outlook
215(4)
8 Spin Waves on Spin Structures: Topology, Localization, and Nonreciprocity 219(42)
Robert L. Stamps
Joo-Von Kim
Felipe Garcia-Sanchez
Pablo Borys
Gianluca Gubbiotti
Yue Li
Robert E. Camley
8.1 Introduction
219(3)
8.2 Chiral Interactions and Spin Waves
222(8)
8.2.1 Nonreciprocity: Symmetry Breaking through the DMI
223(3)
8.2.2 Caustics
226(4)
8.3 Localization and Reconfigurability
230(20)
8.3.1 Domain Wall Channeling
231(4)
8.3.2 Edge (Partial Wall) Channeling
235(6)
8.3.3 Magnetic Configurations in Artificial Spin Ice
241(6)
8.3.4 Reprogrammable Microwave Response
247(3)
8.4 Outlook
250(11)
9 Steering Magnons by Noncollinear Spin Textures 261(34)
Katrin Schultheiss
Kai Wagner
Attila Kakay
Helmut Schultheiss
9.1 Introduction
262(3)
9.2 Magnon Transport and Dispersion in Magnonic Waveguides
265(5)
9.3 Steering and Multiplexing Magnons by Current-Induced, Local Magnetic Fields
270(10)
9.4 Channeling Magnons in Magnetic Domain Walls
280(8)
9.5 Conclusions and Outlook
288(7)
10 Current-Induced Spin Wave Doppler Shift 295(34)
Matthieu Bailleul
Jean-Yves Chauleau
10.1 Introduction
296(1)
10.2 A Doppler Shift for Spin Waves
297(4)
10.2.1 Spin Waves in a Drifting Electron Population
297(2)
10.2.2 Influence of Spin Transfer Torque on Spin Wave Dynamics
299(2)
10.3 Experimental Observations
301(8)
10.3.1 Frequency Domain Inductive Measurements
301(3)
10.3.2 Time Domain Inductive Measurements
304(2)
10.3.3 Magneto-Optical Measurements
306(3)
10.4 Parametrizing the Two-Current Model
309(5)
10.4.1 Definitions of the Degree of Spin Polarization
310(1)
10.4.2 Spin-Dependent Electron Scattering
311(1)
10.4.3 Spin-Polarized Transport in Permalloy Films
312(2)
10.4.4 Spin-Polarized Transport in Other Materials
314(1)
10.5 Extraction of the Non-Adiabatic Spin Transfer Torque Parameter
314(4)
10.6 Other Types of Spin Wave Frequency Shifts
318(6)
10.6.1 Zero-Current Spin Wave Frequency Non-Reciprocity
319(2)
10.6.2 Reciprocal Oersted-Field-Induced Frequency Shift
321(1)
10.6.3 Non-Reciprocal Oersted-Field-Induced Frequency Shift
322(2)
10.7 Conclusion and Perspectives
324(5)
11 Excitation and Amplification of Propagating Spin Waves by Spin Currents 329(34)
Vladislav E. Demidov
Sergej O. Demokritov
11.1 Introduction
329(3)
11.2 Experimental Technique
332(3)
11.3 Excitation of Guided Spin Waves by Spin-Polarized Currents
335(4)
11.4 Control of the Propagation Length of Spin Waves by Pure Spin Currents
339(7)
11.4.1 SHE Spin-Wave Control in All-Metallic Magnonic Waveguides
339(3)
11.4.2 SHE Spin-Wave Control in YIG-Based Magnonic Waveguides
342(4)
11.5 Excitation of Spin Waves by Pure Spin Currents
346(9)
11.5.1 Excitation of Continuous Propagating Spin Waves
346(5)
11.5.2 Excitation of Short Spin-Wave Packets
351(4)
11.6 Conclusions
355(8)
12 Propagating Spin Waves in Nanocontact Spin Torque Oscillators 363(22)
Randy K. Dumas
Afshin Houshang
Johan Akerman
12.1 Introduction
363(2)
12.2 Nanocontact Spin Torque Oscillators
365(3)
12.3 Magnetodynamical Modes
368(2)
12.3.1 Role of the Oersted Field
369(1)
12.4 Asymmetric Spin Wave Propagation
370(3)
12.5 Spin Wave Beam-Driven Synchronization
373(4)
12.6 Conclusions and Future Directions
377(8)
13 Parametric Excitation and Amplification of Spin Waves in Ultrathin Ferromagnetic Nanowires by Microwave Electric Field 385(42)
Roman Verba
Mario Carpentieri
Giovanni Finocchio
Vasil Tiberkevich
Andrei Slavin
13.1 Introduction
386(2)
13.2 Excitation of Spin Waves
388(19)
13.2.1 Efficiency of the Parametric Interaction and Excitation Threshold
388(14)
13.2.1.1 Perpendicularly magnetized nanowire
388(8)
13.2.1.2 Nanowire with in-plane static magnetization
396(3)
13.2.1.3 Notes on multimode waveguides
399(3)
13.2.2 Nonlinear Spin Wave Dynamics under Parametric Pumping: Stationary Amplitudes of Excited Spin Waves
402(5)
13.3 Amplification of Spin Waves by Parametric Pumping
407(5)
13.3.1 Linear Regime of the Parametric Amplification
407(3)
13.3.2 Amplification of Large-Amplitude Spin Waves: Stabilization of Spin Wave Amplitudes
410(2)
13.4 Effect of Interfacial Dzyaloshinskii-Moriya Interaction on Parametric Processes
412(6)
13.4.1 Spin Wave Nonreciprocity Induced by Interfacial Dzyloshinskii-Moriya Interaction
412(2)
13.4.2 Parametric Amplification of Nonreciprocal Spin Waves
414(4)
13.5 Summary
418(9)
Index 427
Sergej O. Demokritov is a leading expert in the field of spin-wave control and excitation using spintronic and magnonic concepts. His main scientific interests lie in the dynamics of magnetic nanosystems, quantum thermodynamics, magnetic memory, sensorics, and high-frequency signal processing. He received his PhD from the Kapitsa Institute for Physical Problems, Moscow. After postdoctoral research at the Jülich Research Center, Germany, with Prof. P. Grünberg (Nobel Prize in Physics, 2007), he established his own group at the University of Münster, Germany, in 2004. Prof. Demokritov is known for his discovery in 2006 of BoseEinstein condensation of magnons at room temperature and his recent work on spin-wave control by spin currents. Since 2014, he is head of the Quantum Spintronics lab in Yekaterinburg, Russia.