Atjaunināt sīkdatņu piekrišanu

E-grāmata: Spray Drying Techniques for Food Ingredient Encapsulation

Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 200,99 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Spray drying is a well-established method for transforming liquid materials into dry powder form. Widely used in the food and pharmaceutical industries, this technology produces high quality powders with low moisture content, resulting in a wide range of shelf stable food and other biologically significant products. Encapsulation technology for bioactive compounds has gained momentum in the last few decades and a series of valuable food compounds, namely flavours, carotenoids and microbial cells have been successfully encapsulated using spray drying.

Spray Drying Technique for Food Ingredient Encapsulation provides an insight into the engineering aspects of the spray drying process in relation to the encapsulation of food ingredients, choice of wall materials, and an overview of the various food ingredients encapsulated using spray drying. The book also throws light upon the recent advancements in the field of encapsulation by spray drying, i.e., nanospray dryers for production of nanocapsules and computational fluid dynamics (CFD) modeling.

Addressing the basics of the technology and its applications, the book will be a reference for scientists, engineers and product developers in the industry.

About the authors xiv
Preface xv
Acknowledgments xvi
1 Introduction to spray drying
1(36)
1.1 Introduction
1(1)
1.2 Stage 1: Atomization
2(9)
1.2.1 Principle of atomization
3(1)
1.2.2 Classification of atomizers
4(11)
1.2.2.1 Rotary atomizers
4(2)
1.2.2.2 Pressure nozzle (or hydraulic) atomizer
6(1)
1.2.2.3 Two-fluid nozzle atomizer
7(1)
1.2.2.4 Ultrasonic atomizers
8(1)
1.2.2.5 Electrohydrodynamic atomizers
9(2)
1.3 Stage 2: Spray-air contact
11(2)
1.4 Stage 3: Evaporation of moisture
13(2)
1.5 Stage 4: Particle separation
15(2)
1.5.1 Cyclone separator
15(1)
1.5.2 Bag filter
15(2)
1.5.3 Electrostatic precipitator
17(1)
1.6 Morphology of spray dried particles
17(5)
1.6.1 Skin-forming morphology with hollow internal structure
19(1)
1.6.2 Blow-hole formation
20(1)
1.6.3 Agglomerate
21(1)
1.6.4 Formation of dented structure and presence of small particles within large particles
21(1)
1.7 Spray-drying process parameters and their influence on product quality
22(2)
1.7.1 Atomization parameters
22(2)
1.7.1.1 Atomization pressure
22(1)
1.7.1.2 Feed flow rate
23(1)
1.7.1.3 Feed viscosity
23(1)
1.7.1.4 Feed surface tension
23(1)
1.8 Parameters of spray-air contact and evaporation
24(3)
1.8.1 Aspirator flow rate (or speed)
24(1)
1.8.2 Inlet temperature
24(1)
1.8.3 Outlet temperature
25(2)
1.8.4 Glass transition temperature (Tg)
27(1)
1.8.5 Residence time of particles in the spray chamber
27(1)
1.9 Types of spray dryer
27(4)
1.9.1 Open cycle spray dryer
28(1)
1.9.2 Closed cycle spray dryer
28(1)
1.9.3 Semi-closed cycle spray dryer
28(1)
1.9.4 Single-stage spray dryer
29(1)
1.9.5 Two-stage spray dryer
29(1)
1.9.6 Short-form
30(1)
1.9.7 Tall-form
30(1)
1.10 Applications and advantages of spray drying
31(2)
References
33(4)
2 Introduction to encapsulation of food ingredients
37(28)
2.1 Introduction
37(1)
2.2 Encapsulation of food ingredients
37(3)
2.3 The core and wall for encapsulation
40(3)
2.3.1 Carbohydrates
42(1)
2.3.2 Proteins
42(1)
2.3.3 Lipids
43(1)
2.4 Encapsulation techniques
43(16)
2.4.1 Chemical encapsulation processes
44(4)
2.4.1.1 Coacervation
44(1)
2.4.1.2 Inclusion complexation
45(2)
2.4.1.3 Liposome entrapment
47(1)
2.4.2 Mechanical or physical encapsulation processes
48(19)
2.4.2.1 Emulsification
48(2)
2.4.2.2 Spray chilling, spray cooling and fluidized bed drying
50(1)
2.4.2.3 Freeze drying
50(2)
2.4.2.4 Extrusion
52(1)
2.4.2.5 Electrohydrodynamic technique for microencapsulation: electrospraying and electrospinning
53(1)
2.4.2.6 Spray drying
54(5)
2.5 The lexicon of encapsulation
59(1)
References
60(5)
3 Spray drying for encapsulation
65(12)
3.1 Introduction
65(1)
3.2 Principle of encapsulation by spray drying
65(2)
3.3 Process steps and parameters of encapsulation by spray drying
67(4)
3.3.1 Emulsion formation
67(3)
3.3.1.1 Rationale of emulsification step
67(1)
3.3.1.2 Emulsion parameters influencing encapsulation efficiency
68(2)
3.3.2 Spray drying of emulsion
70(1)
3.3.2.1 Atomization of the emulsion and influencing parameters
70(1)
3.3.2.2 Drying of the emulsion droplets and influencing parameters
71(1)
3.4 Food ingredients encapsulated by spray drying
71(3)
3.4.1 Microorganisms
72(1)
3.4.2 Flavors
72(1)
3.4.3 Bioactive food components
73(1)
References
74(3)
4 Selection of wall material for encapsulation by spray drying
77(24)
4.1 Introduction
77(1)
4.2 Characteristics of wall materials for encapsulation by spray drying
77(3)
4.2.1 Solubility
77(1)
4.2.2 Emulsification property
78(1)
4.2.3 Film-forming ability
78(1)
4.2.4 Viscosity
78(1)
4.2.5 Glass transition
79(1)
4.2.6 Degree of crystallinity
79(1)
4.3 Approaches to choosing wall materials for encapsulation
80(8)
4.3.1 Estimation of drying kinetics and drying curve analysis for wall material selection
81(3)
4.3.1.1 Isothermal drying method
81(1)
4.3.1.2 Estimation of drying kinetics under simulated conditions of spray drying
82(2)
4.3.2 Estimation of emulsification capacity
84(1)
4.3.3 Analysis of viscosity and Theological characteristics of wall material dispersion
85(1)
4.3.4 Determination of thermal properties of wall materials
86(2)
4.4 Commonly used wall materials for encapsulation of food ingredients by spray drying
88(10)
4.4.1 Gum Arabic
88(1)
4.4.2 Maltodextrin
89(2)
4.4.3 Whey protein (concentrate or isolate)
91(1)
4.4.4 Gelatin
91(1)
4.4.5 Sodium caseinate
92(1)
4.4.6 Modified starches
92(1)
4.4.7 Chitosan
93(5)
References
98(3)
5 Encapsulation of probiotics by spray drying
101(25)
5.1 Introduction
101(1)
5.2 Definition of probiotics and significance of probiotics encapsulation
101(2)
5.3 Probiotic characteristics of importance to spray drying encapsulation
103(1)
5.4 Criteria to decide suitability of wall material for encapsulation of probiotics
104(2)
5.5 Selection of spray drying process parameters
106(9)
5.5.1 Effect of atomization on probiotic cell viability
107(1)
5.5.2 Effect of spray drying process conditions on probiotic cell survival
108(24)
5.5.2.1 Thermal effect of spray drying process on cell viability
109(3)
5.5.2.2 Dehydration effect of spray drying process on cell viability
112(3)
5.6 Stability of spray dried probiotic microencapsulates to gastric environment
115(7)
References
122(4)
6 Encapsulation of flavors and specialty oils
126(30)
6.1 Introduction
126(1)
6.2 Selective diffusion theory and mechanisms of volatile retention during spray drying
127(5)
6.3 Performance parameters of flavor encapsulation by spray drying
132(5)
6.3.1 Encapsulation efficiency
133(1)
6.3.1.1 Total oil analysis
133(1)
6.3.1.2 Surface oil analysis
134(1)
6.3.2 Lipid oxidation
134(1)
6.3.2.1 Peroxide value determination
134(1)
6.3.2.2 Active oxygen determination
135(1)
6.3.3 Morphology and particle size
135(2)
6.4 Factors influencing encapsulation of flavors and oils by spray drying
137(16)
6.4.1 Emulsion-related factors
137(5)
6.4.1.1 Wall material
137(3)
6.4.1.2 Core
140(2)
6.4.2 Spray drying-related factors
142(14)
6.4.2.1 Atomization factors
142(1)
6.4.2.2 Inlet and exit air temperatures
143(2)
6.4.2.3 Feed temperature
145(8)
References
153(3)
7 Encapsulation of bioactive ingredients by spray drying
156(24)
7.1 Introduction
156(1)
7.2 Spray drying for encapsulation of polyphenols
156(5)
7.2.1 Polyphenols and their functional properties
156(1)
7.2.2 Rationale for encapsulation of polyphenols
157(1)
7.2.3 Influence of core nature on encapsulation efficiency
157(1)
7.2.4 Influence of wall material selection and spray drying process parameters on polyphenolic core retention
157(4)
7.3 Spray drying encapsulation of vitamins
161(2)
7.3.1 The functional benefits of vitamins
161(1)
7.3.2 Vitamin stability and rationale for encapsulation of vitamins
161(1)
7.3.3 Influence of wall material and feed composition on vitamin encapsulation
162(1)
7.3.4 Influence of spray drying process parameters on vitamin encapsulation
163(1)
7.4 Spray drying encapsulation of carotenoids
163(13)
7.4.1 Carotenoids and their functional significance
163(2)
7.4.2 Rationale for encapsulation of carotenoids
165(1)
7.4.3 Effect of wall material selection and feed composition on encapsulation of carotenoids
165(2)
7.4.4 Effect of spray drying process conditions on encapsulation of carotenoids
167(9)
References
176(4)
8 Spray drying for nanoencapsulation of food components
180(18)
8.1 Introduction
180(1)
8.2 Introduction to food nanoparticles and nanoencapsulation
181(2)
8.3 Nano spray dryer
183(5)
8.3.1 Operation principle of nano spray dryer
183(6)
8.3.1.1 Piezo-electric driven vibrating mesh atomization
183(1)
8.3.1.2 Heating mode, hot air flow pattern in and configuration of spray chamber
184(2)
8.3.1.3 Product separation by electrostatic precipitator
186(2)
8.4 Nanoencapsulation of food bioactive compounds by nano spray dryer
188(1)
8.5 Analytical methods to characterize nanoencapsulates in foods
189(6)
8.5.1 Electron microscopy
190(3)
8.5.1.1 Scanning electron microscopy
190(1)
8.5.1.2 Transmission electron microscopy
191(1)
8.5.1.3 Atomic force microscopy
191(1)
8.5.1.4 Atmospheric scanning electron microscopy
192(1)
8.5.2 Quantification of nanoparticles' size and mass by electron microscopy
193(2)
References
195(3)
9 Functional properties of spray dried encapsulates
198(12)
9.1 Introduction
198(1)
9.2 Controlled release of encapsulated bioactive compounds
198(3)
9.2.1 Controlled release by dissolution
199(1)
9.2.2 Controlled release by diffusion
199(2)
9.3 Masking of off-taste by spray drying encapsulation
201(1)
9.4 Improvement in stability of encapsulated bioactive compounds
202(6)
References
208(2)
10 Analysis of spray dried encapsulates
210(14)
10.1 Introduction
210(1)
10.2 Analysis of physical characteristics of spray dried encapsulates
211(3)
10.2.1 Moisture content
211(1)
10.2.2 Particle size
211(3)
10.3 Analysis of the efficiency of spray drying encapsulation process
214(2)
10.3.1 Estimation of encapsulation efficiency
214(2)
10.3.1.1 Encapsulation efficiency of specialty oils
214(1)
10.3.1.2 Encapsulation efficiency of vitamins and polyphenolic compounds
215(1)
10.3.1.3 Encapsulation efficiency of flavors and other volatile compounds
215(1)
10.3.1.4 Encapsulation efficiency of probiotic cells
216(1)
10.4 Analysis of the stability of spray dried microencapsulates
216(6)
10.4.1 Analysis of probiotic cell stability under simulated in vitro gastrointestinal conditions
217(1)
10.4.2 Analysis of oxidative stability for lipophilic core compounds
217(3)
10.4.2.1 Estimation of peroxide value by spectrophotometry method
217(1)
10.4.2.2 Rancimat method for estimation of peroxide value
218(1)
10.4.2.3 Gas chromatography method for analysis of oxidative stability
219(1)
10.4.3 Analysis of the functional properties of spray dried encapsulates
220(4)
10.4.3.1 Study of core release from microencapsulates
220(1)
10.4.3.2 Taste-masking effects
221(1)
References
222(2)
11 Modeling approach for spray drying and encapsulation applications
224(28)
11.1 Introduction
224(1)
11.2 Computational fluid dynamics modeling
224(5)
11.2.1 Conservation of mass equation
225(1)
11.2.2 Conservation of momentum equation
225(1)
11.2.3 Conservation of energy equation
225(4)
11.3 Modeling of spray drying process — a theoretical perspective
229(16)
11.3.1 Atomization
230(2)
11.3.1.1 Boundary conditions for atomization models
230(2)
11.3.2 Spray-air contact
232(11)
11.3.2.1 Reference frames
235(2)
11.3.2.2 Turbulence models
237(2)
11.3.2.3 Droplet/particle trajectory
239(1)
11.3.2.4 Droplet temperature
239(1)
11.3.2.5 Droplet residence time
240(1)
11.3.2.6 Particle impact position
241(2)
11.3.3 Droplet drying and particle formation
243(2)
11.4 Modeling of core release from encapsulates
245(4)
References
249(3)
12 Synergistic spray drying techniques for encapsulation
252(23)
12.1 Introduction
252(1)
12.2 Spray fluidized bed coating for encapsulation
252(11)
12.2.1 Theory of fluidization
253(1)
12.2.2 Fluid bed encapsulation — process steps and influential factors
253(10)
12.2.2.1 Atomization
254(4)
12.2.2.2 Droplet-particle interactions
258(3)
12.2.2.3 Drying of coating material on particle surface
261(1)
12.2.2.4 Food ingredient applications of spray fluidized bed coating
261(1)
12.2.2.5 Challenges associated with spray fluidized bed coating
262(1)
12.2.2.6 Recent advancements in spray fluidized bed coating
263(1)
12.3 Spray-freeze-drying for encapsulation
263(10)
12.3.1 Spray freezing
265(5)
12.3.1.1 Spray freezing into vapor (SFV)
265(1)
12.3.1.2 Spray freezing into vapor over liquid (SFV/L)
265(4)
12.3.1.3 Spray freezing into liquid (SFL)
269(1)
12.3.2 Freeze drying
270(1)
12.3.2.1 Conventional freeze drying
270(1)
12.3.2.2 Atmospheric freeze drying
271(1)
12.3.3 Factors affecting the encapsulation efficiency of SFD process
271(2)
References
273(2)
13 Industrial relevance and commercial applications of spray dried active food encapsulates
275(10)
13.1 Introduction
275(1)
13.2 Applications of spray dried encapsulates in the food industries
276(2)
13.2.1 Confectionery industry
276(1)
13.2.2 Bakery industry
277(1)
13.2.3 Other product categories
278(1)
13.3 Cost analysis of the spray drying encapsulated active ingredient
278(3)
13.4 Major industry players producing spray dried encapsulated food ingredients
281(2)
13.4.1 Symrise
281(1)
13.4.2 International Flavors & Fragrances (IFF)
281(1)
13.4.3 Firmenich
281(1)
13.4.4 Givaudan
282(1)
13.4.5 Takasago International Corporation
282(1)
13.4.6 TasteTech
282(1)
13.4.7 Kievit
282(1)
13.4.8 Synthite
282(1)
13.5 Challenges and future scope of the spray drying encapsulation of food ingredients
283(1)
References
284(1)
Index 285
Dr C. Anandharamakrishnan is Principal Scientist of the Food Engineering Department, CSIR-Central Food Technological Research Institute, Mysore, India. Padma Ishwarya S. is Research Fellow of the Food Engineering Department, CSIR-Central Food Technological Research Institute, Mysore, India.