About the Author |
|
xiii | |
About the Technical Reviewer |
|
xv | |
Foreword |
|
xvii | |
Acknowledgments |
|
xix | |
Introduction |
|
xxi | |
|
Chapter 1 Why SQL Server 2019? |
|
|
1 | (18) |
|
|
2 | (1) |
|
|
3 | (3) |
|
Seattle Becomes SQL Server 2019 |
|
|
6 | (1) |
|
Modernizing Your Database with SQL Server 2019 |
|
|
7 | (8) |
|
|
10 | (1) |
|
|
11 | (1) |
|
|
11 | (1) |
|
Mission-Critical Availability |
|
|
12 | (1) |
|
Modern Development Platform |
|
|
12 | (1) |
|
Investing in the Platform of Your Choice |
|
|
13 | (1) |
|
|
14 | (1) |
|
|
14 | (1) |
|
Getting Started with SQL Server 2019 |
|
|
15 | (4) |
|
|
15 | (1) |
|
|
15 | (1) |
|
Migrate to SQL Server 2019 |
|
|
15 | (1) |
|
What's New in SQL Server 2019 |
|
|
15 | (1) |
|
Download Book Code and Sample Databases |
|
|
16 | (1) |
|
|
16 | (1) |
|
It Is Your Grandpa's SQL Server? |
|
|
16 | (3) |
|
Chapter 2 Intelligent Performance |
|
|
19 | (68) |
|
Why Intelligent Performance? |
|
|
19 | (1) |
|
Intelligent Query Processing |
|
|
20 | (41) |
|
Prerequisites for Using the Examples for Intelligent Query Processing |
|
|
22 | (2) |
|
Memory Grant Feedback Row Mode |
|
|
24 | (18) |
|
Table Variable Deferred Compilation |
|
|
42 | (7) |
|
|
49 | (3) |
|
|
52 | (5) |
|
Approximate Count Distinct |
|
|
57 | (4) |
|
Lightweight Query Profiling |
|
|
61 | (13) |
|
Prerequisites for Using the Examples for Lightweight Query Profiling |
|
|
62 | (1) |
|
Should I Kill an Active Query? |
|
|
63 | (5) |
|
|
68 | (6) |
|
|
74 | (9) |
|
Memory-Optimized TempDB Metadata |
|
|
75 | (6) |
|
|
81 | (1) |
|
Persistent Memory Support |
|
|
82 | (1) |
|
Last-Page Insert Contention |
|
|
83 | (2) |
|
|
85 | (2) |
|
Chapter 3 New Security Capabilities |
|
|
87 | (28) |
|
Enhancing What We Have Built |
|
|
87 | (1) |
|
Always Encrypted with Secure Enclaves |
|
|
88 | (4) |
|
|
90 | (1) |
|
Using Always Encrypted with Enclaves |
|
|
91 | (1) |
|
|
92 | (19) |
|
Prerequisites for Using the Examples |
|
|
95 | (1) |
|
Using Data Classification |
|
|
96 | (9) |
|
Auditing and Data Classification |
|
|
105 | (6) |
|
Other New Security Features |
|
|
111 | (3) |
|
|
111 | (1) |
|
|
112 | (2) |
|
|
114 | (1) |
|
Chapter 4 Mission-Critical Availability |
|
|
115 | (32) |
|
|
116 | (7) |
|
Resumable Index Operations |
|
|
117 | (1) |
|
Prerequisites to Using the Example |
|
|
118 | (1) |
|
Try Out Resumable Index Creation |
|
|
118 | (5) |
|
Online Index Maintenance for Columnstore |
|
|
123 | (1) |
|
Enhancing Always On Availability Groups |
|
|
123 | (2) |
|
Support for More Synchronous Replicas |
|
|
124 | (1) |
|
Secondary to Primary Replica Read/Write Connection Redirection |
|
|
124 | (1) |
|
Accelerated Database Recovery |
|
|
125 | (20) |
|
The Challenge of Long Active Transactions |
|
|
126 | (1) |
|
How Accelerated Database Recovery Works |
|
|
126 | (9) |
|
Using Accelerated Database Recovery |
|
|
135 | (4) |
|
Accelerate Database Recovery Nuts and Bolts |
|
|
139 | (6) |
|
|
145 | (2) |
|
Chapter 5 Modern Development Platform |
|
|
147 | (28) |
|
Languages, Drivers, and Platforms |
|
|
148 | (3) |
|
|
148 | (3) |
|
|
151 | (1) |
|
|
151 | (5) |
|
What Is a Graph Database in SQL Server? |
|
|
152 | (1) |
|
Using a Graph Database in SQL Server |
|
|
153 | (2) |
|
Graph Enhancements for SQL Server 2019 |
|
|
155 | (1) |
|
|
156 | (2) |
|
|
157 | (1) |
|
|
157 | (1) |
|
SQL Server Machine Learning Services |
|
|
158 | (8) |
|
|
159 | (4) |
|
Security, Isolation, and Governance |
|
|
163 | (2) |
|
What's New in SQL Server 2019? |
|
|
165 | (1) |
|
Extending the T-SQL Language |
|
|
166 | (8) |
|
The Extensibility Framework |
|
|
167 | (1) |
|
Extending T-SQL with Java |
|
|
168 | (6) |
|
Implementing and Using Other Languages |
|
|
174 | (1) |
|
|
174 | (1) |
|
Chapter 6 SQL Server 2019 on Linux |
|
|
175 | (20) |
|
The Amazing Story of SQL Server on Linux |
|
|
175 | (2) |
|
What Is New for SQL Server 2019 on Linux |
|
|
177 | (1) |
|
Platform and Deployment Enhancements |
|
|
178 | (4) |
|
|
178 | (2) |
|
SQL Server 2019 on Linux Deployment |
|
|
180 | (1) |
|
Supporting New Linux Releases |
|
|
181 | (1) |
|
Persistent Memory Support |
|
|
182 | (1) |
|
SQL Server Replication on Linux |
|
|
183 | (1) |
|
Change Data Capture (CDC) on Linux |
|
|
184 | (1) |
|
|
184 | (2) |
|
Active Directory with OpenLDAP |
|
|
186 | (1) |
|
SQL Server Machine Learning Services and Extensibility on Linux |
|
|
187 | (6) |
|
Deployment of SQL Server ML Services on Linux |
|
|
187 | (2) |
|
|
189 | (3) |
|
The Extensibility Framework and Language Extensions |
|
|
192 | (1) |
|
|
193 | (1) |
|
|
193 | (2) |
|
Chapter 7 Inside SQL Server Containers |
|
|
195 | (54) |
|
Why SQL Server Containers? |
|
|
195 | (4) |
|
How SQL Server Containers Work |
|
|
199 | (7) |
|
|
199 | (1) |
|
|
200 | (1) |
|
|
201 | (2) |
|
|
203 | (3) |
|
What Is New for SQL Server 2019 |
|
|
206 | (4) |
|
Prerequisites for the Examples |
|
|
210 | (2) |
|
Deploying a SQL Server Container |
|
|
212 | (13) |
|
A New Way to Update SQL Server |
|
|
225 | (4) |
|
Deploying Container As an Application |
|
|
229 | (7) |
|
The docker-compose.yml File |
|
|
230 | (1) |
|
|
231 | (2) |
|
Running the Containers for Replication |
|
|
233 | (3) |
|
Deploying SQL Containers in Production |
|
|
236 | (7) |
|
|
236 | (2) |
|
|
238 | (1) |
|
|
239 | (1) |
|
|
239 | (2) |
|
Server or Database Configuration |
|
|
241 | (1) |
|
|
242 | (1) |
|
|
242 | (1) |
|
SQL Server Windows Containers |
|
|
243 | (3) |
|
|
246 | (3) |
|
Chapter 8 SQL Server on Kubernetes |
|
|
249 | (48) |
|
|
249 | (4) |
|
|
250 | (1) |
|
|
250 | (2) |
|
Comment on Internals of k8s |
|
|
252 | (1) |
|
|
253 | (2) |
|
Prerequisites for the Examples |
|
|
255 | (2) |
|
Deploying SQL Server on k8s |
|
|
257 | (24) |
|
|
273 | (8) |
|
SQL Server High Availability on k8s |
|
|
281 | (6) |
|
Updating SQL Server on k8s |
|
|
287 | (5) |
|
|
292 | (1) |
|
SQL Server Availability Groups on k8s |
|
|
292 | (3) |
|
|
295 | (2) |
|
Chapter 9 SQL Server Data Virilization |
|
|
297 | (34) |
|
|
297 | (5) |
|
|
298 | (2) |
|
What Is Data Virilization? |
|
|
300 | (2) |
|
|
302 | (9) |
|
|
303 | (2) |
|
SQL Server 2019 Polybase Architecture |
|
|
305 | (1) |
|
|
305 | (2) |
|
The Polybase Standalone Instance |
|
|
307 | (2) |
|
A Polybase Scale-Out Group |
|
|
309 | (1) |
|
Query Processing and Polybase |
|
|
310 | (1) |
|
How Does It Work on Linux? |
|
|
310 | (1) |
|
How Is This Different Than Azure? |
|
|
310 | (1) |
|
Prerequisites for the Examples |
|
|
311 | (4) |
|
Setting Up and Enabling Polybase |
|
|
311 | (2) |
|
|
313 | (2) |
|
|
315 | (12) |
|
Tools and External Tables |
|
|
315 | (2) |
|
Using an External Table with Azure SQL Database |
|
|
317 | (8) |
|
Using Built-in Connectors for External Tables |
|
|
325 | (1) |
|
Using an External Table with HDFS |
|
|
326 | (1) |
|
Using External Tables with ODBC Connectors |
|
|
326 | (1) |
|
Considerations for External Tables |
|
|
327 | (1) |
|
|
327 | (1) |
|
External Tables vs. Linked Servers |
|
|
328 | (1) |
|
Restrictions and Limitations |
|
|
328 | (1) |
|
|
328 | (3) |
|
Chapter 10 SQL Server Big Data Clusters |
|
|
331 | (52) |
|
|
334 | (1) |
|
What Comes with Big Data Clusters? |
|
|
335 | (3) |
|
|
335 | (1) |
|
|
336 | (1) |
|
Hadoop Distributed File System (HDFS) |
|
|
336 | (1) |
|
|
336 | (1) |
|
|
336 | (1) |
|
|
337 | (1) |
|
|
337 | (1) |
|
|
337 | (1) |
|
|
337 | (1) |
|
Prerequisites for the Examples |
|
|
338 | (1) |
|
Deploying Big Data Clusters |
|
|
339 | (12) |
|
|
339 | (5) |
|
The BDC Deployment Experience |
|
|
344 | (2) |
|
|
346 | (4) |
|
Configuring Deployment for Production |
|
|
350 | (1) |
|
Big Data Cluster Architecture |
|
|
351 | (12) |
|
SQL Server Master Instance |
|
|
353 | (4) |
|
|
357 | (2) |
|
|
359 | (2) |
|
|
361 | (1) |
|
|
361 | (1) |
|
|
362 | (1) |
|
|
363 | (11) |
|
Using Data Virtualization |
|
|
366 | (3) |
|
|
369 | (1) |
|
|
369 | (2) |
|
Deploying and Using Applications |
|
|
371 | (1) |
|
|
372 | (1) |
|
|
372 | (1) |
|
Jupyter Books for SQL Server Big Data Clusters |
|
|
373 | (1) |
|
Machine Learning and Big Data Clusters |
|
|
374 | (2) |
|
Machine Learning Packages |
|
|
375 | (1) |
|
|
375 | (1) |
|
Managing and Monitoring Big Data Clusters |
|
|
376 | (5) |
|
Managing Kubernetes (k8s) |
|
|
376 | (1) |
|
Managing and Monitoring Big Data Clusters |
|
|
377 | (4) |
|
|
381 | (2) |
|
Chapter 11 The Voice of the Customer and Migration |
|
|
383 | (30) |
|
The Voice of the Customer |
|
|
383 | (10) |
|
|
384 | (2) |
|
|
386 | (3) |
|
|
389 | (4) |
|
What About Business Intelligence? |
|
|
393 | (1) |
|
Migration to SQL Server 2019 |
|
|
394 | (18) |
|
|
394 | (1) |
|
Database Migration Assistant |
|
|
395 | (2) |
|
Database Experimentation Assistant |
|
|
397 | (2) |
|
Upgrading to SQL Server 2019 |
|
|
399 | (4) |
|
|
403 | (4) |
|
Query Tuning Assistant and Post Migration |
|
|
407 | (1) |
|
Running in Azure Virtual Machine |
|
|
408 | (2) |
|
SQL Server Migration Assistant |
|
|
410 | (2) |
|
|
412 | (1) |
Index |
|
413 | |