Atjaunināt sīkdatņu piekrišanu

E-grāmata: Standard Methods of Geophysical Formation Evaluation

  • Formāts: 464 pages
  • Izdošanas datums: 03-Feb-2020
  • Izdevniecība: CRC Press Inc
  • ISBN-13: 9781000716313
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 60,11 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 464 pages
  • Izdošanas datums: 03-Feb-2020
  • Izdevniecība: CRC Press Inc
  • ISBN-13: 9781000716313
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The second in a three-volume comprehensive reference for classroom or individual use covering the entire field of formation evaluation, from concepts and theories through standard methods used by the petroleum industry to new applications in environmental science and engineering, hydrogeology, and other fields. Volume two provides complete instructions for understanding and using the electrical and porosity determination methods. The treatment is not in exhaustive detail, but references are provided for further study. It is not intended to replace the available books on log analysis, but considers subjects not usually covered in them. Volume one is an introduction, and volume three covers non-hydrocarbon methods; each of the three is self- contained. Annotation c. by Book News, Inc., Portland, Or.

Recenzijas

"fundamental knowledge and general rules of well logging are gathered and clearly presented and the reviewed book can play important role in the education of log analysts." -Jadwiga Jarzyna, Environmental Protection

Preface xi
1. Resistivity Methods
1(36)
1.1 Introduction
1(1)
1.2 Nomenclature
2(2)
1.3 Unfocused Resistivity Methods
4(11)
1.3.1 Single-Electrode Systems
6(3)
1.3.2 Equivalent Circuit
9(6)
1.3.2.1 The Effect of Formation Resistivity
11(1)
1.3.2.2 Volume of Investigation
12(3)
1.4 Averaging Within the Volume of Investigation
15(2)
1.5 Position of the Return Electrode
17(1)
1.6 Return Electrode Grounding Resistance
17(2)
1.7 Multi-Electrode Systems
19(7)
1.7.1 Normal Resistivity Devices
19(3)
1.7.2 Empirical Method to Estimate R(t)
22(2)
1.7.3 Departure Curves
24(1)
1.7.4 Lateral Resistivity Devices
24(2)
1.8 General Expression for Resistivity Devices
26(2)
1.9 Microresistivity Systems
28(2)
1.10 Miscellaneous Resistivity Items
30(2)
1.11 Surface-Resistivity Methods
32(5)
2. Focused Resistivity Methods
37(22)
2.1 Focusing Electrode Devices -- Omnidirectional
37(11)
2.1.1 3-Electrode Guard Logs
39(4)
2.1.2 7-Electrode Guard Logs
43(2)
2.1.3 Shallow Investigating Guarded Electrode Device
45(1)
2.1.4 Spherically Focused Systems
46(1)
2.1.5 Radial Pseudo-Geometrical Factors
47(1)
2.2 Sidewall Guarded Electrode Systems
48(6)
2.2.1 Microlaterolog (MLL)
49(1)
2.2.2 Proximity Log (PL)
50(1)
2.2.3 Microspherically Focused Log (MSFL)
51(3)
2.3 General Reduction Procedure
54(5)
3. Induction Methods
59(24)
3.1 Introduction
59(1)
3.2 Principles
60(3)
3.3 Conventional Induction Logs
63(1)
3.4 Phasor(SWC) Induction Systems
64(1)
3.5 BPB Array Induction Logs
65(1)
3.6 Factors Affecting Induction Logs
66(7)
3.6.1 Skin Effect
66(1)
3.6.2 Bed Boundary Effects
67(2)
3.6.3 Thin-Bed Response
69(1)
3.6.4 Dipping Beds
70(2)
3.6.5 Net Bed Boundary Response
72(1)
3.7 Data Reduction
73(10)
3.7.1 Borehole Corrections
75(2)
3.7.2 Adjacent Bed Correction
77(1)
3.7.3 Invaded Zone Correction
78(5)
4. Spontaneous Potentials
83(38)
4.1 Introduction
83(3)
4.2 Principles
86(7)
4.2.1 Physical Principles
86(7)
4.2.1.1 Absorption or Shale Potential
87(1)
4.2.1.2 The Electrochemical or Diffusion Potential
87(2)
4.2.1.3 Effect of Ion Types
89(4)
4.3 Thin Beds
93(3)
4.3.1 Formation Water Resistivity, R(w)
94(2)
4.4 Taking Ion Types into Consideration
96(1)
4.5 Dunlap Multipliers
96(2)
4.6 The Effect of Shale
98(3)
4.6.1 Direction of Deflection
99(2)
4.6.2 Formation Resistivity Effects
101(1)
4.7 The Static SP
101(1)
4.8 The Calculation of Salinity
102(1)
4.9 Reduction of Data
102(3)
4.10 Methods of Determining R(w) and Use of R(w) Calculations
105(5)
4.10.1 SP vs. R(xo)/R(t); The Ratio Method
105(2)
4.10.2 R(w) from Resistivity Values
107(1)
4.10.3 The Use of R(wa)
108(1)
4.10.4 The Dual Water Model
108(1)
4.10.5 R(w) from R(xo) and R(t)
108(2)
4.11 The Electrokinetic Component
110(2)
4.12 Redox Component
112(1)
4.13 Problems with SP Measurements
113(5)
4.13.1 Resistance Component
113(1)
4.13.2 Sensitivity to Motion
114(1)
4.13.3 Electrode Touching the Sidewall
115(1)
4.13.4 Bimetallism
116(1)
4.13.5 Improper Electrode Material
117(1)
4.14 The SP Measurement in Fresh-Water Sands
118(3)
5. Resistivity Log Interpretation
121(28)
5.1 Introduction
121(2)
5.2 The Archie Method
123(5)
5.2.1 Values of the Cementation Exponent
127(1)
5.3 The Ratio Method
128(1)
5.4 The Rocky Mountain Method
129(1)
5.5 The Migrated Hydrocarbon Method
129(4)
5.5.1 Estimation of Permeability from the Resistivity Gradient
131(2)
5.6 Determination of the Diameter of Invasion
133(7)
5.6.1 Reading "Tornado" Charts
137(3)
5.7 R(T) vs. F Crossplot--The Pickett Plot
140(3)
5.7.1 The Nonlinear (Hingle) Crossplot
142(1)
5.8 Moveable Hydrocarbon Method
143(2)
5.9 The F(R'A) vs. F(R) Method
145(1)
5.10 The R(W,A) vs. R(w) Method
145(1)
5.11 Non-Hydrocarbon Usage of Resistance and Resistivity
145(4)
6. Natural Gamma Radiation
149(34)
6.1 Introduction
149(1)
6.2 Radiation from Formation Materials
150(4)
6.2.1 Clays
150(2)
6.2.2 Sands
152(1)
6.2.3 Carbonates
153(1)
6.2.4 Igneous and Metamorphic Materials
153(1)
6.2.5 Fractures and Faults
154(1)
6.3 Gross Count or Total Count Gamma Ray Systems (GCGR)
154(15)
6.3.1 Ranges of Detection
154(1)
6.3.2 Equilibrium
155(4)
6.3.3 Volume of Investigation and Borehole Corrections
159(2)
6.3.4 Calibrations
161(2)
6.3.5 Uses
163(6)
6.3.5.1 Volume of Clay/Shale Estimation, V(sh)
164(3)
6.3.5.2 Correlation
167(2)
6.3.5.3 Lithology
169(1)
6.4 Deadtime
169(2)
6.5 Bed-Boundary Effects
171(2)
6.6 Thin Beds
173(1)
6.6 Dipping Beds and Slant Holes
174(1)
6.7 Grade Calculations
175(5)
6.8 Fracture Detection
180(1)
6.9 Tracers
180(3)
7. Gamma Ray Spectroscopy
183(30)
7.1 Introduction
183(1)
7.2 Chemical and Geological Implications
183(1)
7.3 System Types
184(6)
7.3.1 Detectors
184(1)
7.3.2 Single Window Systems
185(1)
7.3.3 KUT Systems
185(1)
7.3.4 MCA Systems
186(2)
7.3.5 Monitoring Systems
188(2)
7.4 Problems with Spectrographic Systems
190(2)
7.5 Major Mineral Descriptions
192(7)
7.5.1 Uraniferous Mineral Systems
193(4)
7.5.2 Thorium Minerals
197(2)
7.6 Miscellaneous Effects
199(6)
7.7 Spectrometric Ratios
205(4)
7.7.1 Uses of Ratios
205(4)
7.7.1.1 Uses of the Thorium/Uranium Ratio, Th/U
206(1)
7.7.1.2 Potential Uses of the Uranium/Potassium Ratio, U/K
207(1)
7.7.1.3 Some Uses of the Thorium/Potassium Ratio, Th/K
208(1)
7.8 Cross-Plotting
209(4)
8. Scattered Gamma Ray Methods
213(32)
8.1 Introduction
213(1)
8.2 Formation Density Logging
214(1)
8.3 Source Energy Requirements
215(1)
8.4 Operation
216(10)
8.4.1 Example -- The Mole Fraction Method
222(1)
8.4.2 Example -- The Molecular Mass Method
222(4)
8.5 Downhole Tool Types
226(6)
8.5.1 Omnidirectional Density Systems
226(2)
8.5.2 Single-Spacing Sidewall Systems
228(1)
8.5.3 Mudcake Compensated Density Systems
229(3)
8.6 Calibrations
232(2)
8.7 Interference by Natural Gamma Radiation
234(2)
8.8 Rock Type Identification
236(1)
8.9 Porosity Calculations
236(2)
8.10 Coal Analysis
238(1)
8.11 Scattered Gamma Ray Spectroscopy
239(6)
9. Neutron Porosity Logging
245(44)
9.1 Introduction
245(1)
9.2 Physical Description
245(12)
9.2.1 Operational Principles
246(1)
9.2.2 Moderation
247(2)
9.2.3 Reactions
249(8)
9.3 Sources
257(5)
9.3.1 A Brief History of Neutron Logging Sources
260(2)
9.3.2 Detectors
262(1)
9.4 Systems Currently in Use
262(3)
9.4.1 Single-Spacing Systems
263(1)
9.4.2 Sidewall Neutron Porosity Systems
264(1)
9.4.3 Borehole Compensated Systems
265(1)
9.5 Neutron Porosity Measurements
265(6)
9.5.1 Shale Correction
265(1)
9.5.2 Rock Type Corrections
266(2)
9.5.3 Borehole Corrections
268(2)
9.5.4 Cased Hole Use
270(1)
9.6 Calibration
271(6)
9.7 Data Reduction
277(8)
9.7.1 Depth of Investigation
281(1)
9.7.2 Source-Detector Spacing
282(2)
9.7.3 Interpretation Methods
284(1)
9.8 Chlorine Logs
285(4)
10. Neutron Activation Methods
289(26)
10.1 Introduction
289(2)
10.2 Types of Systems
291(1)
10.3 Neutron Generators
292(2)
10.4 Detector Types
294(1)
10.5 Action within the Formation Material
294(1)
10.6 Saturation Systems
295(8)
10.7 Neutron Induced Gamma Ray Logs
303(1)
10.8 Capture Spectra
304(1)
10.9 Ratio Logs
305(2)
10.10 Uranium Systems
307(4)
10.11 Thermal Neutron Formation Temperature Log
311(4)
11. Acoustical Methods
315(48)
11.1 Introduction
315(1)
11.2 Principles
315(11)
11.2.1 Operation Principles of Downhole Acoustic Systems
324(2)
11.3 Tool Configurations
326(11)
11.3.1 Single-Transmitter, Single-Receiver Systems
326(1)
11.3.2 Multiple-Receiver Systems
327(3)
11.3.3 Borehole Compensated Systems
330(2)
11.3.4 Long Spacing Acoustic Systems
332(1)
11.3.5 The Array Sonic System
332(1)
11.3.6 Log Presentation
333(3)
11.3.7 Effect of Gas and Road Noise
336(1)
11.4 Full-Wave Systems
337(2)
11.5 Evaluation
339(18)
11.5.1 Porosity Determinations
339(7)
11.5.2 Mechanical Properties
346(1)
11.5.3 Effects of Clay or Shale
346(2)
11.5.4 Primary Porosity
348(1)
11.5.5 Fractured Media
348(2)
11.5.6 Porosity and Lithology Determinations
350
11.5.6.1 T(a) vs. XXX Cross-Plot
350(1)
11.5.6.2 XXX vs. Rt Cross-Plot
350(2)
11.5.6.3 Travel Time vs. Bulk Density and Neutron Porosity
352
11.5.7 Analysis of the Log of Figure 11.31
345(12)
11.6 Determination of Permeability from Acoustic Logs
357(1)
11.7 Geological Uses of Acoustical Logs
358(1)
11.8 Cement Bond Logging
359(2)
11.9 Determination of the Shear Wave Velocity Using the Stoneley Mode
361(2)
12. Formation Evaluation -- Standard Methods
363(62)
12.1 Introduction
363(1)
12.2 Assumptions
364(1)
12.3 Methods Available
364(1)
12.4 Multiple Parameters
364(1)
12.5 Scope
365(1)
12.6 Research
366(1)
12.7 New Information
367(1)
12.8 Methods to be Used
367(2)
12.9 Analysis Methods -- Standard Measurements
369(3)
12.9.1 Normalizing Data
369(1)
12.9.2 Depths
370(1)
12.9.3 Cuttings Lag
371(1)
12.10 Identifying the Formation Sequence
372(2)
12.10.1 Characteristic Signatures and Values
372(1)
12.10.2 Target Zones
373(1)
12.10.3 Visual Examination
373(1)
12.11 Rock Type
374(11)
12.11.1 Potassium Minerals
376(2)
12.11.2 Shale and Clay Content
378(6)
12.11.2.1 Clay Minerals
381(3)
12.11.3 Carbonates
384(1)
12.12 Quantitative Analysis
385(13)
12.12.1 Shale Identification
385(3)
12.12.2 Hard-Rock and Non-Hydrocarbon Environments
388(2)
12.12.3 Quantitative Porosity and Saturation
390(1)
12.12.4 Saturation Determination
391(6)
12.12.5 Reserve Calculation
397(1)
12.13 Cross-Plots
398(6)
12.13.1 MN Cross-Plot
398(1)
12.13.2 The AK Cross-Plot
399(1)
12.13.3 The MID Plot
399(4)
12.13.4 Simultaneous Equation Method
403(1)
12.13.5 Frequency Plots
404(1)
12.14 Permeability
404(5)
12.14.1 Permeability Estimated from the Resistivity Gradient
407(2)
12.14.2 Permeability as a Function of Mineral Content
409(1)
12.15 Formation Fluids
409(5)
12.15.1 Fluid Types
409(1)
12.15.2 Fluid Distribution
410(2)
12.15.3 Fluid Pressure
412(1)
12.15.4 Overpressure
413(1)
12.16 Structural Changes
414(1)
12.17 Formation Rock Strength and Competence
415(2)
12.18 Zone Extent
417(1)
12.19 Redox Effects
417(4)
12.20 Enhancement
421(2)
12.21 Combinations
423(1)
12.22 Other Methods
423(2)
Glossary 425(4)
Bibliography 429(6)
Index 435
Hallenburg\, James K.