Atjaunināt sīkdatņu piekrišanu

E-grāmata: Standard Model Of Quantum Physics In Clifford Algebra, The

(Ecole Polytechnique Paris, France), (Ministry Of National Education, France)
  • Formāts: 240 pages
  • Izdošanas datums: 08-Oct-2015
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • Valoda: eng
  • ISBN-13: 9789814719889
  • Formāts - EPUB+DRM
  • Cena: 39,45 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 240 pages
  • Izdošanas datums: 08-Oct-2015
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • Valoda: eng
  • ISBN-13: 9789814719889

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

We extend to gravitation our previous study of a quantum wave for all particles and antiparticles of each generation (electron + neutrino + u and d quarks for instance). This wave equation is form invariant under Cl3*, then relativistic invariant. It is gauge invariant under the gauge group of the standard model, with a mass term: this was impossible before, and the consequence was an impossibility to link gauge interactions and gravitation.
Foreword v
Introduction 1(8)
1 Clifford algebras
9(16)
1.1 What is a Clifford algebra?
10(1)
1.2 Clifford algebra Cl2 of a Euclidean plane
11(1)
1.3 Clifford algebra Cl3 of the physical space
12(7)
1.3.1 Cross-product, orientation
13(1)
1.3.2 Pauli algebra
13(1)
1.3.3 Three conjugations are used
14(1)
1.3.4 Gradient, divergence and curl
15(1)
1.3.5 Space-time in space algebra
16(1)
1.3.6 Relativistic invariance
16(3)
1.3.7 Restricted Lorentz group
19(1)
1.4 Clifford algebra Cl1,3 of the space-time
19(3)
1.4.1 Dirac matrices
21(1)
1.5 Clifford Algebra Cl1,5
22(3)
2 Dirac equation
25(14)
2.1 With the Dirac matrices
25(3)
2.1.1 Relativistic invariance
27(1)
2.2 The wave with the space algebra
28(6)
2.2.1 Relativistic invariance
30(1)
2.2.2 More tensors
31(2)
2.2.3 Plane waves
33(1)
2.3 The Dirac equation in space-time algebra
34(1)
2.4 Invariant Dirac equation
35(2)
2.5 Charge conjugation
37(2)
3 The homogeneous nonlinear wave equation
39(10)
3.1 Gauge invariances
41(1)
3.2 Plane waves
42(1)
3.3 Relativistic invariance
43(3)
3.4 Charge conjugation
46(2)
3.5 The Hydrogen atom
48(1)
4 Invariance of electromagnetic laws
49(26)
4.1 Maxwell--de Broglie electromagnetism
49(6)
4.1.1 Invariance under Cl*3 and numeric dimension
51(3)
4.1.2 Numeric dimension
54(1)
4.2 Electromagnetism with magnetic monopoles
55(1)
4.3 Back to space-time
56(3)
4.3.1 From Cl3 to Cl1,3
57(1)
4.3.2 Electromagnetism
58(1)
4.4 A real photon
59(6)
4.4.1 The electromagnetism of the photon
62(3)
5 Miscellaneous
65(10)
5.1 Anisotropy
65(3)
5.2 Systems of electrons
68(2)
5.3 Equation without Lagrangian formalism
70(1)
5.3.1 Plane waves
71(1)
5.4 Three other photons of Lochak
72(1)
5.5 Uniqueness of the electromagnetic field
73(2)
6 Electro-weak interactions: The lepton case
75(18)
6.1 The Weinberg--Salam model for the electron
75(10)
6.2 Invariances
85(2)
6.3 Geometry linked to the wave in space-time algebra
87(2)
6.4 Existence of the inverse
89(1)
6.5 Wave equations
90(3)
7 Electro-weak and strong interactions
93(18)
7.1 Electro-weak interactions: the quark sector
93(4)
7.2 Chromodynamics
97(2)
7.3 Three generations, four neutrinos
99(2)
7.4 Geometric transformation linked to the complete wave
101(3)
7.4.1 Invariance
103(1)
7.5 Existence of the inverse
104(2)
7.6 Wave equation with mass term
106(4)
7.6.1 Form invariance of the wave equation
109(1)
7.7 Charge of quarks
110(1)
8 Magnetic monopoles
111(22)
8.1 Russian experimental works
111(2)
8.2 Works at E.C.N.
113(12)
8.2.1 Results about powder and gas
114(3)
8.2.2 Stains
117(1)
8.2.3 Traces
118(7)
8.3 Electrons and monopoles
125(8)
8.3.1 Charge conjugation
126(1)
8.3.2 The interaction electron-monopole
127(1)
8.3.3 Electro-weak interactions with monopoles
128(2)
8.3.4 Gauge invariant wave equation
130(3)
9 Inertia and gravitation
133(10)
9.1 Differential geometry
133(6)
9.1.1 Uniform movement of rotation
137(1)
9.1.2 Uniformly accelerated movement of translation
138(1)
9.2 Wave normalization
139(1)
9.3 Gravitation
140(2)
9.4 Unification
142(1)
10 Conclusion
143(18)
10.1 Old flaws
143(1)
10.2 Our work
144(4)
10.3 Principle of minimum
148(2)
10.4 Theory versus experiment
150(1)
10.5 Future applications
151(1)
10.6 Improved standard model
152(2)
10.7 Algorithmic and data structures
154(3)
10.8 Beyond the standard model, back to physical reality
157(4)
Appendix A Calculations in Clifford algebras
161(10)
A.1 Invariant equation and Lagrangian
161(6)
A.2 Calculation of the reverse in Cl1,5
167(4)
Appendix B Electron+neutrino+quarks
171(32)
B.1 Gauge generated by i
171(2)
B.2 Tensorial densities for electron+neutrino
173(2)
B.3 Getting the wave equation
175(7)
B.4 Invariances
182(6)
B.4.1 Form invariance
183(1)
B.4.2 Gauge invariance --- group generated by P0
184(1)
B.4.3 Gauge invariance --- group generated by P3
185(2)
B.4.4 Gauge invariance --- group generated by P1
187(1)
B.5 Complete wave
188(15)
B.5.1 Scalar densities
188(1)
B.5.2 Mass term
189(1)
B.5.3 Group generated by P0
189(1)
B.5.4 Group generated by P1
190(2)
B.5.5 Group generated by P2
192(2)
B.5.6 Group generated by P3
194(1)
B.5.7 Group generated by Γ1
195(2)
B.5.8 Group generated by Γk, k > 1
197(1)
B.5.9 Group generated by Γ3
198(1)
B.5.10 Group generated by Γ8
199(4)
Appendix C The hydrogen atom
203(18)
C.1 Separating variables
203(5)
C.2 Angular momentum operators
208(2)
C.3 Resolution of the linear radial system
210(5)
C.4 Calculation of the Yvon--Takabayasi angle
215(3)
C.5 Radial polynomials with degree 0
218(3)
Bibliography 221(4)
Index 225