Foreword |
|
v | |
Introduction |
|
1 | (8) |
|
|
9 | (16) |
|
1.1 What is a Clifford algebra? |
|
|
10 | (1) |
|
1.2 Clifford algebra Cl2 of a Euclidean plane |
|
|
11 | (1) |
|
1.3 Clifford algebra Cl3 of the physical space |
|
|
12 | (7) |
|
1.3.1 Cross-product, orientation |
|
|
13 | (1) |
|
|
13 | (1) |
|
1.3.3 Three conjugations are used |
|
|
14 | (1) |
|
1.3.4 Gradient, divergence and curl |
|
|
15 | (1) |
|
1.3.5 Space-time in space algebra |
|
|
16 | (1) |
|
1.3.6 Relativistic invariance |
|
|
16 | (3) |
|
1.3.7 Restricted Lorentz group |
|
|
19 | (1) |
|
1.4 Clifford algebra Cl1,3 of the space-time |
|
|
19 | (3) |
|
|
21 | (1) |
|
1.5 Clifford Algebra Cl1,5 |
|
|
22 | (3) |
|
|
25 | (14) |
|
2.1 With the Dirac matrices |
|
|
25 | (3) |
|
2.1.1 Relativistic invariance |
|
|
27 | (1) |
|
2.2 The wave with the space algebra |
|
|
28 | (6) |
|
2.2.1 Relativistic invariance |
|
|
30 | (1) |
|
|
31 | (2) |
|
|
33 | (1) |
|
2.3 The Dirac equation in space-time algebra |
|
|
34 | (1) |
|
2.4 Invariant Dirac equation |
|
|
35 | (2) |
|
|
37 | (2) |
|
3 The homogeneous nonlinear wave equation |
|
|
39 | (10) |
|
|
41 | (1) |
|
|
42 | (1) |
|
3.3 Relativistic invariance |
|
|
43 | (3) |
|
|
46 | (2) |
|
|
48 | (1) |
|
4 Invariance of electromagnetic laws |
|
|
49 | (26) |
|
4.1 Maxwell--de Broglie electromagnetism |
|
|
49 | (6) |
|
4.1.1 Invariance under Cl*3 and numeric dimension |
|
|
51 | (3) |
|
|
54 | (1) |
|
4.2 Electromagnetism with magnetic monopoles |
|
|
55 | (1) |
|
|
56 | (3) |
|
|
57 | (1) |
|
|
58 | (1) |
|
|
59 | (6) |
|
4.4.1 The electromagnetism of the photon |
|
|
62 | (3) |
|
|
65 | (10) |
|
|
65 | (3) |
|
|
68 | (2) |
|
5.3 Equation without Lagrangian formalism |
|
|
70 | (1) |
|
|
71 | (1) |
|
5.4 Three other photons of Lochak |
|
|
72 | (1) |
|
5.5 Uniqueness of the electromagnetic field |
|
|
73 | (2) |
|
6 Electro-weak interactions: The lepton case |
|
|
75 | (18) |
|
6.1 The Weinberg--Salam model for the electron |
|
|
75 | (10) |
|
|
85 | (2) |
|
6.3 Geometry linked to the wave in space-time algebra |
|
|
87 | (2) |
|
6.4 Existence of the inverse |
|
|
89 | (1) |
|
|
90 | (3) |
|
7 Electro-weak and strong interactions |
|
|
93 | (18) |
|
7.1 Electro-weak interactions: the quark sector |
|
|
93 | (4) |
|
|
97 | (2) |
|
7.3 Three generations, four neutrinos |
|
|
99 | (2) |
|
7.4 Geometric transformation linked to the complete wave |
|
|
101 | (3) |
|
|
103 | (1) |
|
7.5 Existence of the inverse |
|
|
104 | (2) |
|
7.6 Wave equation with mass term |
|
|
106 | (4) |
|
7.6.1 Form invariance of the wave equation |
|
|
109 | (1) |
|
|
110 | (1) |
|
|
111 | (22) |
|
8.1 Russian experimental works |
|
|
111 | (2) |
|
|
113 | (12) |
|
8.2.1 Results about powder and gas |
|
|
114 | (3) |
|
|
117 | (1) |
|
|
118 | (7) |
|
8.3 Electrons and monopoles |
|
|
125 | (8) |
|
|
126 | (1) |
|
8.3.2 The interaction electron-monopole |
|
|
127 | (1) |
|
8.3.3 Electro-weak interactions with monopoles |
|
|
128 | (2) |
|
8.3.4 Gauge invariant wave equation |
|
|
130 | (3) |
|
9 Inertia and gravitation |
|
|
133 | (10) |
|
9.1 Differential geometry |
|
|
133 | (6) |
|
9.1.1 Uniform movement of rotation |
|
|
137 | (1) |
|
9.1.2 Uniformly accelerated movement of translation |
|
|
138 | (1) |
|
|
139 | (1) |
|
|
140 | (2) |
|
|
142 | (1) |
|
|
143 | (18) |
|
|
143 | (1) |
|
|
144 | (4) |
|
10.3 Principle of minimum |
|
|
148 | (2) |
|
10.4 Theory versus experiment |
|
|
150 | (1) |
|
|
151 | (1) |
|
10.6 Improved standard model |
|
|
152 | (2) |
|
10.7 Algorithmic and data structures |
|
|
154 | (3) |
|
10.8 Beyond the standard model, back to physical reality |
|
|
157 | (4) |
|
Appendix A Calculations in Clifford algebras |
|
|
161 | (10) |
|
A.1 Invariant equation and Lagrangian |
|
|
161 | (6) |
|
A.2 Calculation of the reverse in Cl1,5 |
|
|
167 | (4) |
|
Appendix B Electron+neutrino+quarks |
|
|
171 | (32) |
|
|
171 | (2) |
|
B.2 Tensorial densities for electron+neutrino |
|
|
173 | (2) |
|
B.3 Getting the wave equation |
|
|
175 | (7) |
|
|
182 | (6) |
|
|
183 | (1) |
|
B.4.2 Gauge invariance --- group generated by P0 |
|
|
184 | (1) |
|
B.4.3 Gauge invariance --- group generated by P3 |
|
|
185 | (2) |
|
B.4.4 Gauge invariance --- group generated by P1 |
|
|
187 | (1) |
|
|
188 | (15) |
|
|
188 | (1) |
|
|
189 | (1) |
|
B.5.3 Group generated by P0 |
|
|
189 | (1) |
|
B.5.4 Group generated by P1 |
|
|
190 | (2) |
|
B.5.5 Group generated by P2 |
|
|
192 | (2) |
|
B.5.6 Group generated by P3 |
|
|
194 | (1) |
|
B.5.7 Group generated by Γ1 |
|
|
195 | (2) |
|
B.5.8 Group generated by Γk, k > 1 |
|
|
197 | (1) |
|
B.5.9 Group generated by Γ3 |
|
|
198 | (1) |
|
B.5.10 Group generated by Γ8 |
|
|
199 | (4) |
|
Appendix C The hydrogen atom |
|
|
203 | (18) |
|
|
203 | (5) |
|
C.2 Angular momentum operators |
|
|
208 | (2) |
|
C.3 Resolution of the linear radial system |
|
|
210 | (5) |
|
C.4 Calculation of the Yvon--Takabayasi angle |
|
|
215 | (3) |
|
C.5 Radial polynomials with degree 0 |
|
|
218 | (3) |
Bibliography |
|
221 | (4) |
Index |
|
225 | |