Preface |
|
xxiii | |
Part I Stellar Structure |
|
1 | (198) |
|
1 Some Properties of Stars |
|
|
3 | (29) |
|
1.1 Luminosities and Magnitudes |
|
|
3 | (6) |
|
1.1.1 Stellar Luminosities |
|
|
3 | (1) |
|
1.1.2 Photon Luminosities |
|
|
4 | (1) |
|
1.1.3 Apparent Magnitudes |
|
|
5 | (1) |
|
1.1.4 The Parsec Distance Unit |
|
|
6 | (2) |
|
1.1.5 Absolute Magnitudes |
|
|
8 | (1) |
|
1.1.6 Bolometric Magnitudes |
|
|
8 | (1) |
|
1.2 Stars as Blackbody Radiators |
|
|
9 | (3) |
|
|
9 | (1) |
|
1.2.2 Effective Temperatures |
|
|
10 | (1) |
|
1.2.3 Stellar Radii from Effective Temperatures |
|
|
11 | (1) |
|
|
12 | (1) |
|
1.4 Masses and Physical Radii of Stars |
|
|
13 | (1) |
|
|
14 | (6) |
|
1.5.1 Motion of Binary Systems |
|
|
15 | (2) |
|
1.5.2 Radial Velocities and Masses |
|
|
17 | (1) |
|
1.5.3 True Orbit for Visual Binaries |
|
|
18 | (1) |
|
|
19 | (1) |
|
1.6 Mass-Luminosity Relationships |
|
|
20 | (2) |
|
1.7 Summary of Physical Quantities for Stars |
|
|
22 | (1) |
|
1.8 Proper Motion and Space Velocities |
|
|
22 | (1) |
|
|
23 | (2) |
|
1.9.1 Population I and Population II |
|
|
23 | (1) |
|
|
24 | (1) |
|
1.10 Variable Stars and Period-Luminosity Relations |
|
|
25 | (4) |
|
|
25 | (1) |
|
|
26 | (1) |
|
1.10.3 Pulsational Instabilities |
|
|
27 | (1) |
|
1.10.4 Pulsations and Free-Fall Timescales |
|
|
28 | (1) |
|
Background and Further Reading |
|
|
29 | (1) |
|
|
29 | (3) |
|
2 The Hertzsprung-Russell Diagram |
|
|
32 | (21) |
|
|
32 | (9) |
|
2.1.1 Excitation and the Boltzmann Formula |
|
|
32 | (1) |
|
2.1.2 Ionization and the Saha Equations |
|
|
33 | (2) |
|
2.1.3 Ionization of Hydrogen and Helium |
|
|
35 | (1) |
|
2.1.4 Optimal Temperatures for Spectral Lines |
|
|
36 | (2) |
|
2.1.5 The Spectral Sequence |
|
|
38 | (3) |
|
2.2 HR Diagram for Stars Near the Sun |
|
|
41 | (2) |
|
2.2.1 Solving the Distance Problem |
|
|
41 | (1) |
|
2.2.2 Features of the HR Diagram |
|
|
42 | (1) |
|
2.3 HR Diagram for Clusters |
|
|
43 | (2) |
|
|
45 | (3) |
|
2.4.1 Pressure Broadening of Spectral Lines |
|
|
46 | (1) |
|
2.4.2 Inferring Luminosity Class from Surface Density |
|
|
47 | (1) |
|
2.5 Spectroscopic Parallax |
|
|
48 | (1) |
|
2.6 The HR Diagram and Stellar Evolution |
|
|
49 | (1) |
|
Background and Further Reading |
|
|
49 | (1) |
|
|
49 | (4) |
|
3 Stellar Equations of State |
|
|
53 | (33) |
|
|
53 | (1) |
|
3.2 The Pressure Integral |
|
|
54 | (1) |
|
3.3 Ideal Gas Equation of State |
|
|
54 | (4) |
|
|
56 | (1) |
|
3.3.2 The Adiabatic Index |
|
|
57 | (1) |
|
3.4 Mean Molecular Weights |
|
|
58 | (5) |
|
3.4.1 Concentration Variables |
|
|
59 | (1) |
|
3.4.2 Partially Ionized Gases |
|
|
59 | (1) |
|
3.4.3 Fully-Ionized Gases |
|
|
60 | (1) |
|
3.4.4 Shorthand Notation and Approximations |
|
|
61 | (2) |
|
3.5 Polytropic Equations of State |
|
|
63 | (2) |
|
3.5.1 Polytropic Processes |
|
|
63 | (1) |
|
3.5.2 Properties of Polytropes |
|
|
63 | (2) |
|
3.6 Adiabatic Equations of State |
|
|
65 | (1) |
|
3.7 Equations of State for Degenerate Gases |
|
|
66 | (8) |
|
3.7.1 Pressure Ionization |
|
|
66 | (3) |
|
3.7.2 Distinguishing Classical and Quantum Gases |
|
|
69 | (1) |
|
3.7.3 Nonrelativistic Classical and Quantum Gases |
|
|
70 | (2) |
|
3.7.4 Ultrarelativistic Classical and Quantum Gases |
|
|
72 | (1) |
|
3.7.5 Transition from a Classical to Quantum Gas |
|
|
72 | (2) |
|
3.8 The Degenerate Electron Gas |
|
|
74 | (3) |
|
3.8.1 Fermi Momentum and Fermi Energy |
|
|
74 | (1) |
|
3.8.2 Equation of State for Nonrelativistic Electrons |
|
|
75 | (1) |
|
3.8.3 Equation of State for Ultrarelativistic Electrons |
|
|
76 | (1) |
|
3.9 High Gas Density and Stellar Structure |
|
|
77 | (1) |
|
3.10 Equation of State for Radiation |
|
|
78 | (1) |
|
3.11 Matter and Radiation Mixtures |
|
|
79 | (2) |
|
3.11.1 Mixtures of Ideal Gases and Radiation |
|
|
79 | (1) |
|
3.11.2 Adiabatic Systems of Gas and Radiation |
|
|
79 | (1) |
|
3.11.3 Radiation and Gravitational Stability |
|
|
80 | (1) |
|
Background and Further Reading |
|
|
81 | (1) |
|
|
81 | (5) |
|
4 Hydrostatic and Thermal Equilibrium |
|
|
86 | (19) |
|
4.1 Newtonian Gravitation |
|
|
86 | (1) |
|
4.2 Conditions for Hydrostatic Equilibrium |
|
|
86 | (2) |
|
4.3 Lagrangian and Eulerian Descriptions |
|
|
88 | (3) |
|
4.3.1 Lagrangian Formulation of Hydrostatics |
|
|
88 | (1) |
|
4.3.2 Contrasting Lagrangian and Eulerian Descriptions |
|
|
89 | (2) |
|
|
91 | (1) |
|
4.5 The Virial Theorem for an Ideal Gas |
|
|
92 | (2) |
|
|
94 | (1) |
|
4.7 Total Energy for a Star |
|
|
95 | (1) |
|
4.8 Stability and Heat Capacity |
|
|
96 | (1) |
|
4.8.1 Temperature Response to Energy Fluctuations |
|
|
96 | (1) |
|
4.8.2 Heating Up while Cooling Down |
|
|
97 | (1) |
|
4.9 The Kelvin-Helmholtz Timescale |
|
|
97 | (4) |
|
Background and Further Reading |
|
|
101 | (1) |
|
|
101 | (4) |
|
5 Thermonuclear Reactions in Stars |
|
|
105 | (26) |
|
5.1 Nuclear Energy Sources |
|
|
105 | (5) |
|
5.1.1 The Curve of Binding Energy |
|
|
105 | (2) |
|
5.1.2 Masses and Mass Excesses |
|
|
107 | (1) |
|
|
108 | (1) |
|
5.1.4 Efficiency of Hydrogen Burning |
|
|
109 | (1) |
|
5.2 Thermonuclear Hydrogen Burning |
|
|
110 | (4) |
|
5.2.1 The Proton-Proton Chains |
|
|
110 | (1) |
|
|
111 | (2) |
|
5.2.3 Competition of PP Chains and the CNO Cycle |
|
|
113 | (1) |
|
5.3 Cross Sections and Reaction Rates |
|
|
114 | (1) |
|
5.3.1 Reaction Cross Sections |
|
|
114 | (1) |
|
5.3.2 Rates from Cross Sections |
|
|
115 | (1) |
|
5.4 Thermally Averaged Reaction Rates |
|
|
115 | (1) |
|
5.5 Parameterization of Cross Sections |
|
|
116 | (1) |
|
5.6 Nonresonant Cross Sections |
|
|
117 | (4) |
|
|
117 | (1) |
|
5.6.2 Barrier Penetration Factors |
|
|
118 | (1) |
|
5.6.3 Astrophysical S-Factors |
|
|
119 | (1) |
|
|
120 | (1) |
|
5.7 Resonant Cross Sections |
|
|
121 | (2) |
|
5.8 Calculations with Rate Libraries |
|
|
123 | (1) |
|
5.9 Total Rate of Energy Production |
|
|
123 | (1) |
|
5.10 Temperature and Density Exponents |
|
|
123 | (1) |
|
5.11 Neutron Reactions and Weak Interactions |
|
|
124 | (3) |
|
5.12 Reaction Selection Rules |
|
|
127 | (1) |
|
5.12.1 Angular Momentum Conservation |
|
|
127 | (1) |
|
5.12.2 Isotopic Spin Conservation |
|
|
127 | (1) |
|
5.12.3 Parity Conservation |
|
|
127 | (1) |
|
Background and Further Reading |
|
|
128 | (1) |
|
|
129 | (2) |
|
6 Stellar Burning Processes |
|
|
131 | (22) |
|
6.1 Reactions of the Proton-Proton Chains |
|
|
131 | (4) |
|
|
131 | (2) |
|
6.1.2 Branching for PP-II and PP-III |
|
|
133 | (1) |
|
|
134 | (1) |
|
6.2 Reactions of the CNO Cycle |
|
|
135 | (3) |
|
6.2.1 The CNO Cycle in Operation |
|
|
136 | (1) |
|
6.2.2 Rate of CNO Energy Production |
|
|
137 | (1) |
|
|
138 | (5) |
|
6.3.1 Equilibrium Population of 8Be |
|
|
139 | (1) |
|
6.3.2 Formation of the Excited State in 12C |
|
|
140 | (1) |
|
6.3.3 Formation of the Ground State in 12C |
|
|
141 | (1) |
|
6.3.4 Energy Production in the Triple-α Reaction |
|
|
142 | (1) |
|
6.4 Helium Burning to C, O, and Ne |
|
|
143 | (4) |
|
6.4.1 Oxygen and Neon Production |
|
|
143 | (3) |
|
6.4.2 The Outcome of Helium Burning |
|
|
146 | (1) |
|
6.5 Advanced Burning Stages |
|
|
147 | (4) |
|
6.5.1 Carbon, Oxygen, and Neon Burning |
|
|
147 | (1) |
|
|
148 | (3) |
|
6.6 Timescales for Advanced Burning |
|
|
151 | (1) |
|
Background and Further Reading |
|
|
151 | (1) |
|
|
151 | (2) |
|
7 Energy Transport in Stars |
|
|
153 | (35) |
|
7.1 Modes of Energy Transport |
|
|
153 | (1) |
|
|
154 | (2) |
|
7.3 Energy Transport by Conduction |
|
|
156 | (1) |
|
7.4 Radiative Energy Transport |
|
|
157 | (5) |
|
|
157 | (1) |
|
7.4.2 Conduction in Degenerate Matter |
|
|
158 | (1) |
|
7.4.3 Absorption of Photons |
|
|
158 | (1) |
|
|
159 | (1) |
|
7.4.5 General Contributions to Stellar Opacity |
|
|
160 | (2) |
|
7.5 Energy Transport by Convection |
|
|
162 | (1) |
|
7.6 Conditions for Convective Instability |
|
|
163 | (4) |
|
7.6.1 The Schwarzschild Instability |
|
|
164 | (1) |
|
7.6.2 The Ledoux Instability |
|
|
165 | (1) |
|
7.6.3 Salt-Finger Instability |
|
|
166 | (1) |
|
7.7 Critical Temperature Gradient for Convection |
|
|
167 | (3) |
|
7.7.1 Convection and the Adiabatic Index |
|
|
168 | (1) |
|
7.7.2 Convection and the Pressure Gradient |
|
|
169 | (1) |
|
7.8 Stellar Temperature Gradients |
|
|
170 | (1) |
|
7.8.1 Choice between Radiative or Convective Transport |
|
|
170 | (1) |
|
7.8.2 Radiative Temperature Gradients |
|
|
171 | (1) |
|
7.9 Mixing-Length Treatment of Convection |
|
|
171 | (4) |
|
7.9.1 Pressure Scale Height |
|
|
172 | (1) |
|
7.9.2 The Mixing-Length Philosophy |
|
|
173 | (1) |
|
7.9.3 Analysis of Solar Convection |
|
|
174 | (1) |
|
7.10 Examples of Stellar Convective Regions |
|
|
175 | (3) |
|
7.10.1 Convection in Stellar Cores |
|
|
175 | (2) |
|
7.10.2 Surface Ionization Zones |
|
|
177 | (1) |
|
7.11 Energy Transport by Neutrino Emission |
|
|
178 | (7) |
|
7.11.1 Neutrino Production Mechanisms |
|
|
178 | (4) |
|
7.11.2 Classification and Rates |
|
|
182 | (2) |
|
7.11.3 Coherent Neutrino Scattering |
|
|
184 | (1) |
|
Background and Further Reading |
|
|
185 | (1) |
|
|
185 | (3) |
|
8 Summary of Stellar Equations |
|
|
188 | (11) |
|
8.1 The Basic Equations Governing Stars |
|
|
188 | (2) |
|
8.1.1 Hydrostatic Equilibrium |
|
|
188 | (1) |
|
|
189 | (1) |
|
8.1.3 Temperature Gradient |
|
|
189 | (1) |
|
8.1.4 Changes in Isotopic Composition |
|
|
189 | (1) |
|
|
190 | (1) |
|
8.2 Solution of the Stellar Equations |
|
|
190 | (1) |
|
8.3 Important Stellar Timescales |
|
|
191 | (1) |
|
8.4 Hydrostatic Equilibrium for Polytropes |
|
|
192 | (4) |
|
8.4.1 Lane-Emden Equation and Solutions |
|
|
193 | (2) |
|
8.4.2 Computing Physical Quantifies |
|
|
195 | (1) |
|
8.4.3 Limitations of the Lane-Emden Approximation |
|
|
196 | (1) |
|
8.5 Numerical Solution of the Stellar Equations |
|
|
196 | (1) |
|
Background and Further Reading |
|
|
197 | (1) |
|
|
197 | (2) |
Part II Stellar Evolution |
|
199 | (200) |
|
|
201 | (27) |
|
9.1 Evidence for Starbirth in Nebulae |
|
|
201 | (2) |
|
9.2 Jeans Criterion for Gravitational Collapse |
|
|
203 | (1) |
|
9.3 Fragmentation of Collapsing Clouds |
|
|
204 | (2) |
|
9.4 Stability in Adiabatic Approximation |
|
|
206 | (1) |
|
9.4.1 Dependence on Adiabatic Exponents |
|
|
206 | (1) |
|
9.4.2 Physical Interpretation |
|
|
207 | (1) |
|
9.5 The Collapse of a Protostar |
|
|
207 | (2) |
|
9.5.1 Initial Free-Fall Collapse |
|
|
208 | (1) |
|
9.5.2 A Little More Realism |
|
|
209 | (1) |
|
9.6 Onset of Hydrostatic Equilibrium |
|
|
209 | (3) |
|
9.7 Termination of Fragmentation |
|
|
212 | (1) |
|
|
212 | (2) |
|
9.8.1 Fully Convective Stars |
|
|
212 | (1) |
|
9.8.2 Development of a Radiative Core |
|
|
213 | (1) |
|
9.8.3 Dependence on Composition and Mass |
|
|
214 | (1) |
|
9.9 Limiting Lower Mass for Stars |
|
|
214 | (1) |
|
|
215 | (2) |
|
9.10.1 Spectroscopic Signatures |
|
|
216 | (1) |
|
9.10.2 Stars, Brown Dwarfs, and Planets |
|
|
217 | (1) |
|
9.11 Limiting Upper Mass for Stars |
|
|
217 | (3) |
|
9.11.1 Eddington Luminosity |
|
|
218 | (1) |
|
9.11.2 Estimate of Upper Limiting Mass |
|
|
218 | (2) |
|
9.12 The Initial Mass Function |
|
|
220 | (4) |
|
9.13 Protoplanetary Disks |
|
|
221 | (1) |
|
|
222 | (1) |
|
9.14.1 The Doppler Spectroscopy Method |
|
|
223 | (1) |
|
9.14.2 Transits of Extrasolar Planets |
|
|
224 | (1) |
|
Background and Further Reading |
|
|
224 | (1) |
|
|
224 | (4) |
|
10 Life and Times on the Main Sequence |
|
|
228 | (25) |
|
10.1 The Standard Solar Model |
|
|
228 | (5) |
|
10.1.1 Composition of the Sun |
|
|
229 | (1) |
|
10.1.2 Energy Generation and Composition Changes |
|
|
229 | (1) |
|
10.1.3 Hydrostatic Equilibrium |
|
|
229 | (1) |
|
|
230 | (1) |
|
10.1.5 Constraints and Solution |
|
|
230 | (3) |
|
|
233 | (3) |
|
10.2.1 Solar p-Modes and g-Modes |
|
|
233 | (1) |
|
10.2.2 Surface Vibrations and the Solar Interior |
|
|
233 | (3) |
|
10.3 Solar Neutrino Production |
|
|
236 | (2) |
|
10.3.1 Sources of Solar Neutrinos |
|
|
236 | (1) |
|
10.3.2 Testing the Standard Solar Model with Neutrinos |
|
|
237 | (1) |
|
10.4 The Solar Electron-Neutrino Deficit |
|
|
238 | (4) |
|
10.4.1 The Davis Chlorine Experiment |
|
|
238 | (1) |
|
10.4.2 The Gallium Experiments |
|
|
239 | (1) |
|
|
239 | (2) |
|
10.4.4 Astrophysics and Particle Physics Explanations |
|
|
241 | (1) |
|
10.5 Evolution of Stars on the Main Sequence |
|
|
242 | (1) |
|
10.6 Timescale for Main Sequence Lifetimes |
|
|
243 | (2) |
|
10.7 Evolutionary Timescales |
|
|
245 | (1) |
|
10.8 Evolution Away from the Main Sequence |
|
|
246 | (4) |
|
10.8.1 Three Categories of Post Main Sequence Evolution |
|
|
247 | (1) |
|
10.8.2 Examples of Post Main Sequence Evolution |
|
|
247 | (3) |
|
Background and Further Reading |
|
|
250 | (1) |
|
|
250 | (3) |
|
11 Neutrino Flavor Oscillations |
|
|
253 | (18) |
|
11.1 Overview of the Solar Neutrino Problem |
|
|
253 | (1) |
|
11.2 Weak Interactions and Neutrino Physics |
|
|
254 | (5) |
|
11.2.1 Matter and Force Fields of the Standard Model |
|
|
254 | (2) |
|
11.2.2 Masses for Particles of the Standard Model |
|
|
256 | (1) |
|
11.2.3 Charged and Neutral Currents |
|
|
257 | (2) |
|
|
259 | (1) |
|
11.3.1 Flavor Mixing in the Quark Sector |
|
|
259 | (1) |
|
11.3.2 Flavor Mixing in the Leptonic Sector |
|
|
259 | (1) |
|
11.4 Implications of a Finite Neutrino Mass |
|
|
260 | (1) |
|
11.5 Neutrino Vacuum Oscillations |
|
|
260 | (5) |
|
11.5.1 Mixing for Two Neutrino Flavors |
|
|
261 | (1) |
|
11.5.2 The Vacuum Oscillation Length |
|
|
262 | (1) |
|
11.5.3 Time-Averaged or Classical Probabilities |
|
|
263 | (2) |
|
11.6 Neutrino Oscillations with Three Flavors |
|
|
265 | (3) |
|
11.6.1 CP Violation in Neutrino Oscillations |
|
|
266 | (1) |
|
11.6.2 The Neutrino Mass Hierarchy |
|
|
267 | (1) |
|
11.6.3 Recovering 2-Flavor Mixing |
|
|
267 | (1) |
|
11.7 Neutrino Masses and Particle Physics |
|
|
268 | (1) |
|
Background and Further Reading |
|
|
268 | (1) |
|
|
268 | (3) |
|
12 Solar Neutrinos and the MSW Effect |
|
|
271 | (26) |
|
12.1 Propagation of Neutrinos in Matter |
|
|
271 | (3) |
|
12.1.1 Matrix Elements for Interaction with Matter |
|
|
271 | (1) |
|
12.1.2 The Effective Neutrino Mass in Medium |
|
|
272 | (2) |
|
|
274 | (2) |
|
12.2.1 Propagation of Left-Handed Neutrinos |
|
|
274 | (1) |
|
12.2.2 Evolution in the Flavor Basis |
|
|
275 | (1) |
|
12.2.3 Propagation in Matter |
|
|
276 | (1) |
|
|
276 | (4) |
|
12.3.1 Mass Eigenvalues for Constant Density |
|
|
277 | (1) |
|
12.3.2 The Matter Mixing Angle theta m |
|
|
277 | (1) |
|
12.3.3 The Matter Oscillation Length Lm |
|
|
278 | (1) |
|
12.3.4 Flavor Conversion in Constant-Density Matter |
|
|
279 | (1) |
|
12.4 The MSW Resonance Condition |
|
|
280 | (2) |
|
12.5 Resonant Flavor Conversion |
|
|
282 | (3) |
|
12.6 Propagation in Matter of Varying Density |
|
|
285 | (1) |
|
12.7 The Adiabatic Criterion |
|
|
286 | (1) |
|
12.8 MSW Neutrino Flavor Conversion |
|
|
287 | (3) |
|
12.8.1 Flavor Conversion in Adiabatic Approximation |
|
|
287 | (1) |
|
12.8.2 Adiabatic Conversion and the Mixing Angle |
|
|
288 | (1) |
|
12.8.3 Resonant Conversion for Large or Small theta |
|
|
289 | (1) |
|
12.8.4 Energy Dependence of Flavor Conversion |
|
|
290 | (1) |
|
12.9 Resolution of the Solar Neutrino Problem |
|
|
290 | (5) |
|
12.9.1 Super-K Observation of Flavor Oscillation |
|
|
291 | (1) |
|
12.9.2 SNO Observation of Neutral Current Interactions |
|
|
291 | (1) |
|
12.9.3 KamLAND Constraints on Mixing Angles |
|
|
292 | (2) |
|
12.9.4 Large Mixing Angles and the MSW Mechanism |
|
|
294 | (1) |
|
12.9.5 A Tale of Large and Small Mixing Angles |
|
|
294 | (1) |
|
Background and Further Reading |
|
|
295 | (1) |
|
|
295 | (2) |
|
13 Evolution of Lower-Mass Stars |
|
|
297 | (27) |
|
13.1 Endpoints of Stellar Evolution |
|
|
297 | (1) |
|
|
298 | (2) |
|
13.3 Stages of Red Giant Evolution |
|
|
300 | (2) |
|
13.4 The Red Giant Branch |
|
|
302 | (2) |
|
13.4.1 The Schonberg-Chandrasekhar Limit |
|
|
303 | (1) |
|
13.4.2 Crossing the Hertzsprung Gap |
|
|
303 | (1) |
|
|
304 | (2) |
|
13.5.1 Core Equation of State and Helium Ignition |
|
|
304 | (1) |
|
13.5.2 Thermonuclear Runaways in Degenerate Matter |
|
|
305 | (1) |
|
|
305 | (1) |
|
13.6 Horizontal Branch Evolution |
|
|
306 | (1) |
|
13.6.1 Life on the Helium Main Sequence |
|
|
306 | (1) |
|
13.6.2 Leaving the Horizontal Branch |
|
|
306 | (1) |
|
13.7 Asymptotic Giant Branch Evolution |
|
|
307 | (8) |
|
|
308 | (2) |
|
13.7.2 Slow Neutron Capture |
|
|
310 | (4) |
|
13.7.3 Development of Deep Convective Envelopes |
|
|
314 | (1) |
|
|
314 | (1) |
|
13.8 Ejection of the Envelope |
|
|
315 | (1) |
|
13.9 White Dwarfs and Planetary Nebulae |
|
|
316 | (1) |
|
13.10 Stellar Dredging Operations |
|
|
317 | (2) |
|
13.11 The Sun's Red Giant Evolution |
|
|
319 | (2) |
|
13.12 Overview for Low-Mass Stars |
|
|
321 | (1) |
|
Background and Further Reading |
|
|
321 | (1) |
|
|
321 | (3) |
|
14 Evolution of Higher-Mass Stars |
|
|
324 | (13) |
|
14.1 Unique Features of More Massive Stars |
|
|
324 | (1) |
|
14.2 Advanced Burning Stages in Massive Stars |
|
|
325 | (1) |
|
14.3 Envelope Loss from Massive Stars |
|
|
326 | (1) |
|
|
326 | (1) |
|
14.3.2 The Strange Case of η Carinae |
|
|
327 | (1) |
|
14.4 Neutrino Cooling of Massive Stars |
|
|
327 | (3) |
|
14.4.1 Local and Nonlocal Cooling |
|
|
329 | (1) |
|
14.4.2 Neutrino Cooling and the Pace of Stellar Evolution |
|
|
329 | (1) |
|
14.5 Massive Population III Stars |
|
|
330 | (1) |
|
14.6 Evolutionary Endpoints for Massive Stars |
|
|
330 | (3) |
|
14.6.1 Observational and Theoretical Characteristics |
|
|
331 | (1) |
|
14.6.2 Black Holes from Failed Supernovae? |
|
|
331 | (2) |
|
14.6.3 Gravitational Waves and Stellar Evolution |
|
|
333 | (1) |
|
14.7 Summary: Evolution after the Main Sequence |
|
|
333 | (1) |
|
|
333 | (2) |
|
Background and Further Reading |
|
|
335 | (1) |
|
|
335 | (2) |
|
15 Stellar Pulsations and Variability |
|
|
337 | (9) |
|
15.1 The Instability Strip |
|
|
337 | (1) |
|
15.2 Adiabatic Radial Pulsations |
|
|
337 | (3) |
|
15.3 Pulsating Variables as Heat Engines |
|
|
340 | (1) |
|
15.4 Non-adiabatic Radial Pulsations |
|
|
340 | (4) |
|
15.4.1 Thermodynamics of Sustained Pulsation |
|
|
340 | (2) |
|
15.4.2 Opacity and the k-Mechanism |
|
|
342 | (1) |
|
15.4.3 Partial Ionization Zones and the Instability Strip |
|
|
342 | (2) |
|
15.4.4 The elementof-Mechanism and Massive Stars |
|
|
344 | (1) |
|
15.5 Non-radial Pulsation |
|
|
344 | (1) |
|
Background and Further Reading |
|
|
345 | (1) |
|
|
345 | (1) |
|
16 White Dwarfs and Neutron Stars |
|
|
346 | (32) |
|
16.1 Properties of White Dwarfs |
|
|
346 | (3) |
|
16.1.1 Density and Gravity |
|
|
347 | (1) |
|
|
347 | (1) |
|
16.1.3 Ingredients of a White Dwarf Description |
|
|
348 | (1) |
|
16.2 Polytropic Models of White Dwarfs |
|
|
349 | (6) |
|
16.2.1 Low-Mass White Dwarfs |
|
|
349 | (1) |
|
16.2.2 High-Mass White Dwarfs |
|
|
350 | (2) |
|
16.2.3 Heuristic Derivation of the Chandrasekhar Limit |
|
|
352 | (2) |
|
16.2.4 Effective Adiabatic Index and Gravitational Stability |
|
|
354 | (1) |
|
16.3 Internal Structure of White Dwarfs |
|
|
355 | (1) |
|
16.3.1 Temperature Variation |
|
|
355 | (1) |
|
16.3.2 An Insulating Blanket around a Metal Ball |
|
|
356 | (1) |
|
16.4 Cooling of White Dwarfs |
|
|
356 | (2) |
|
16.5 Crystallization of White Dwarfs |
|
|
358 | (1) |
|
16.6 Beyond White Dwarf Masses |
|
|
359 | (1) |
|
16.7 Basic Properties of Neutron Stars |
|
|
359 | (6) |
|
|
360 | (1) |
|
16.7.2 Internal Structure |
|
|
361 | (1) |
|
16.7.3 Cooling of Neutron Stars |
|
|
362 | (2) |
|
16.7.4 Evidence for Superfluidity in Neutron Stars |
|
|
364 | (1) |
|
16.8 Hydrostatic Equilibrium in General Relativity |
|
|
365 | (2) |
|
16.8.1 The Oppenheimer-Volkov Equations |
|
|
366 | (1) |
|
16.8.2 Comparison with Newtonian Gravity |
|
|
366 | (1) |
|
|
367 | (7) |
|
16.9.1 The Pulsar Mechanism |
|
|
367 | (1) |
|
16.9.2 Pulsar Magnetic Fields |
|
|
368 | (1) |
|
|
369 | (1) |
|
16.9.4 Pulsar Spindown and Glitches |
|
|
369 | (1) |
|
16.9.5 Millisecond Pulsars |
|
|
370 | (2) |
|
|
372 | (2) |
|
|
374 | (1) |
|
Background and Further Reading |
|
|
375 | (1) |
|
|
375 | (3) |
|
|
378 | (21) |
|
17.1 The Failure of Newtonian Gravity |
|
|
378 | (1) |
|
17.2 The General Theory of Relativity |
|
|
379 | (2) |
|
17.2.1 General Covariance |
|
|
379 | (1) |
|
17.2.2 The Principle of Equivalence |
|
|
379 | (1) |
|
17.2.3 Curved Spacetime and Tensors |
|
|
380 | (1) |
|
17.2.4 Curvature and the Strength of Gravity |
|
|
381 | (1) |
|
17.3 Some Important General Relativistic Solutions |
|
|
381 | (5) |
|
17.3.1 The Einstein Equation |
|
|
382 | (1) |
|
17.3.2 Line Elements and Metrics |
|
|
382 | (1) |
|
17.3.3 Minkowski Spacetime |
|
|
383 | (1) |
|
17.3.4 Schwarzschild Spacetime |
|
|
384 | (1) |
|
|
385 | (1) |
|
17.4 Evidence for Black Holes |
|
|
386 | (6) |
|
17.4.1 Compact Objects in X-ray Binaries |
|
|
387 | (2) |
|
17.4.2 Causality Constraints |
|
|
389 | (1) |
|
17.4.3 The Black Hole Candidate Cygnus X-1 |
|
|
389 | (3) |
|
17.5 Black Holes and Gravitational Waves |
|
|
392 | (1) |
|
17.6 Supermassive Black Holes |
|
|
392 | (1) |
|
17.7 Intermediate-Mass and Mini Black Holes |
|
|
393 | (1) |
|
17.8 Proof of the Pudding: Event Horizons |
|
|
394 | (2) |
|
17.9 Some Measured Black Hole Masses |
|
|
396 | (1) |
|
Background and Further Reading |
|
|
396 | (1) |
|
|
397 | (2) |
Part III Accretion, Mergers, and Explosions |
|
399 | (100) |
|
18 Accreting Binary Systems |
|
|
401 | (20) |
|
18.1 Classes of Accretion |
|
|
401 | (1) |
|
|
402 | (3) |
|
18.2.1 The Roche Potential |
|
|
402 | (1) |
|
|
403 | (1) |
|
|
404 | (1) |
|
18.3 Classification of Binary Star Systems |
|
|
405 | (1) |
|
18.4 Accretion Streams and Accretion Disks |
|
|
406 | (4) |
|
|
406 | (1) |
|
18.4.2 Initial Accretion Velocity |
|
|
406 | (2) |
|
18.4.3 General Properties of Roche-Overflow Accretion |
|
|
408 | (1) |
|
|
408 | (2) |
|
18.5 Wind-Driven Accretion |
|
|
410 | (1) |
|
18.6 Classification of X-Ray Binaries |
|
|
411 | (1) |
|
18.6.1 High-Mass X-Ray Binaries |
|
|
411 | (1) |
|
18.6.2 Low-Mass X-Ray Binaries |
|
|
411 | (1) |
|
18.6.3 Suppression of Accretion for Intermediate Masses |
|
|
412 | (1) |
|
|
412 | (3) |
|
18.7.1 Maximum Energy Release in Accretion |
|
|
412 | (1) |
|
18.7.2 Limits on Accretion Rates |
|
|
413 | (1) |
|
18.7.3 Accretion Temperatures |
|
|
413 | (1) |
|
18.7.4 Maximum Efficiency for Energy Extraction |
|
|
414 | (1) |
|
18.7.5 Storing Energy in Accretion Disks |
|
|
415 | (1) |
|
18.8 Some Accretion-Induced Phenomena |
|
|
415 | (1) |
|
18.9 Accretion and Stellar Evolution |
|
|
416 | (2) |
|
|
416 | (2) |
|
|
418 | (1) |
|
Background and Further Reading |
|
|
418 | (1) |
|
|
418 | (3) |
|
19 Nova Explosions and X-Ray Bursts |
|
|
421 | (8) |
|
|
421 | (4) |
|
|
423 | (2) |
|
19.1.2 Recurrence of Novae |
|
|
425 | (1) |
|
19.1.3 Nucleosynthesis in Novae |
|
|
425 | (1) |
|
19.2 The X-Ray Burst Mechanism |
|
|
425 | (2) |
|
19.2.1 Rapid Proton Capture |
|
|
426 | (1) |
|
19.2.2 Nucleosynthesis and the rp-Process |
|
|
426 | (1) |
|
Background and Further Reading |
|
|
427 | (1) |
|
|
427 | (2) |
|
|
429 | (31) |
|
20.1 Classification of Supernovae |
|
|
429 | (5) |
|
|
430 | (1) |
|
20.1.2 Type Ib and Type Ic |
|
|
431 | (2) |
|
|
433 | (1) |
|
20.2 Thermonuclear Supernovae |
|
|
434 | (6) |
|
20.2.1 The Single-Degenerate Mechanism |
|
|
435 | (1) |
|
20.2.2 The Double-Degenerate Mechanism |
|
|
435 | (2) |
|
20.2.3 Thermonuclear Burning in Extreme Conditions |
|
|
437 | (1) |
|
20.2.4 Element and Energy Production |
|
|
438 | (1) |
|
20.2.5 Late-Time Observables |
|
|
439 | (1) |
|
20.3 Core Collapse Supernovae |
|
|
440 | (10) |
|
20.3.1 The "Supernova Problem" |
|
|
441 | (1) |
|
20.3.2 The Death of Massive Stars |
|
|
441 | (1) |
|
20.3.3 Sequence of Events in Core Collapse |
|
|
442 | (4) |
|
20.3.4 Neutrino Reheating |
|
|
446 | (1) |
|
20.3.5 Convection and Neutrino Reheating |
|
|
447 | (1) |
|
20.3.6 Convectively Unstable Regions in Supernovae |
|
|
448 | (1) |
|
20.3.7 Remnants of Core Collapse |
|
|
449 | (1) |
|
|
450 | (6) |
|
20.4.1 The Neutrino Burst |
|
|
450 | (1) |
|
20.4.2 The Progenitor was Blue! |
|
|
451 | (2) |
|
20.4.3 Radioactive Decay and the Lightcurve |
|
|
453 | (1) |
|
20.4.4 Evolution of the Supernova Remnant |
|
|
454 | (1) |
|
20.4.5 Where is the Neutron Star? |
|
|
455 | (1) |
|
20.5 Heavy Elements and the r-Process |
|
|
456 | (2) |
|
Background and Further Reading |
|
|
458 | (1) |
|
|
458 | (2) |
|
|
460 | (18) |
|
21.1 The Sky in Gamma-Rays |
|
|
460 | (3) |
|
21.2 Localization of Gamma-Ray Bursts |
|
|
463 | (1) |
|
21.3 Generic Characteristics of Gamma-Ray Burst |
|
|
464 | (3) |
|
21.4 The Importance of Ultrarelativistic Jets |
|
|
467 | (1) |
|
21.4.1 Optical Depth for a Nonrelativistic Burst |
|
|
467 | (1) |
|
21.4.2 Optical Depth for an Ultrarelativistic Burst |
|
|
467 | (1) |
|
21.4.3 Confirmation of Large Lorentz Factors |
|
|
468 | (1) |
|
21.5 Association of GRBs with Galaxies |
|
|
468 | (1) |
|
21.6 Mechanisms for the Central Engine |
|
|
469 | (1) |
|
21.7 Long-Period GRB and Supernovae |
|
|
470 | (1) |
|
21.7.1 Types Ib and Ic Supernovae |
|
|
470 | (1) |
|
21.7.2 Role of Metallicity |
|
|
470 | (1) |
|
21.8 Collapsar Model of Long-Period Bursts |
|
|
471 | (3) |
|
21.9 Neutron Star Mergers and Short-Period Bursts |
|
|
474 | (2) |
|
21.10 Multimessenger Astronomy |
|
|
476 | (1) |
|
Background and Further Reading |
|
|
476 | (1) |
|
|
476 | (2) |
|
22 Gravitational Waves and Stellar Evolution |
|
|
478 | (21) |
|
|
478 | (2) |
|
22.2 Sample Gravitational Waveforms |
|
|
480 | (2) |
|
22.3 The Gravitational Wave Event GW150914 |
|
|
482 | (4) |
|
22.3.1 Observed Waveforms |
|
|
483 | (1) |
|
22.3.2 The Black Hole Merger |
|
|
484 | (2) |
|
22.4 A New Probe of Massive-Star Evolution |
|
|
486 | (4) |
|
22.4.1 Formation of Massive Black Hole Binaries |
|
|
486 | (1) |
|
22.4.2 Gravitational Waves and Massive Binary Evolution |
|
|
487 | (2) |
|
22.4.3 Formation of Supermassive Black Holes |
|
|
489 | (1) |
|
22.5 Listening to Multiple Messengers |
|
|
490 | (1) |
|
22.6 Gravitational Waves from Neutron Star Mergers |
|
|
491 | (6) |
|
22.6.1 New Insights Associated with GW170817 |
|
|
493 | (2) |
|
22.6.2 The Kilonova Associated with GW170817 |
|
|
495 | (2) |
|
22.7 Gravitational Wave Sources and Detectors |
|
|
497 | (1) |
|
Background and Further Reading |
|
|
497 | (1) |
|
|
497 | (2) |
Appendix A Constants |
|
499 | (3) |
Appendix B Natural Units |
|
502 | (3) |
Appendix C Mean Molecular Weights |
|
505 | (2) |
Appendix D Reaction Libraries |
|
507 | (9) |
Appendix E A Mixing-Length Model |
|
516 | (3) |
Appendix F Quantum Mechanics |
|
519 | (3) |
Appendix G Using arXiv and ADS |
|
522 | (2) |
References |
|
524 | (10) |
Index |
|
534 | |