Atjaunināt sīkdatņu piekrišanu

E-grāmata: Stars and Stellar Processes

(University of Tennessee, Knoxville)
  • Formāts: PDF+DRM
  • Izdošanas datums: 07-Feb-2019
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781108195706
  • Formāts - PDF+DRM
  • Cena: 73,75 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 07-Feb-2019
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781108195706

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This textbook offers a modern approach to the physics of stars, assuming only undergraduate-level preparation in mathematics and physics, and minimal prior knowledge of astronomy. It starts with a concise review of introductory concepts in astronomy, before covering the nuclear processes and energy transport in stellar interiors, and stellar evolution from star formation to the common stellar endpoints as white dwarfs and neutron stars. In addition to the standard material, the author also discusses more contemporary topics that students will find engaging, such as neutrino oscillations and the MSW resonance, supernovae, gamma-ray bursts, advanced nucleosynthesis, neutron stars, black holes, cosmology, and gravitational waves. With hundreds of worked examples, explanatory boxes, and problems with solutions, this textbook provides a solid foundation for learning either in a classroom setting or through self-study.

Recenzijas

'This is a long-sought after textbook that I very much look forward to owning myself, and using for upper level undergraduate courses as well as in preparing lectures for graduate courses. The author's attention to detail-with-clarity begins in Chapter 1, and continues throughout the text. Most enjoyable are the new modern versions of several classic figures in the field.' Lynne Hillenbrand, California Institute of Technology 'A very comprehensive textbook on stellar physics with plenty of up-to-date topics. The only book needed for an advanced undergraduate level stellar physics course.' Stephen Chi-Yung Ng, University of Hong Kong

Papildus informācija

Presents the physics of stars in relation to modern topics such as neutrino oscillations, supernovae, black holes, and gravitational waves.
Preface xxiii
Part I Stellar Structure 1(198)
1 Some Properties of Stars
3(29)
1.1 Luminosities and Magnitudes
3(6)
1.1.1 Stellar Luminosities
3(1)
1.1.2 Photon Luminosities
4(1)
1.1.3 Apparent Magnitudes
5(1)
1.1.4 The Parsec Distance Unit
6(2)
1.1.5 Absolute Magnitudes
8(1)
1.1.6 Bolometric Magnitudes
8(1)
1.2 Stars as Blackbody Radiators
9(3)
1.2.1 Radiation Laws
9(1)
1.2.2 Effective Temperatures
10(1)
1.2.3 Stellar Radii from Effective Temperatures
11(1)
1.3 Color Indices
12(1)
1.4 Masses and Physical Radii of Stars
13(1)
1.5 Binary Star Systems
14(6)
1.5.1 Motion of Binary Systems
15(2)
1.5.2 Radial Velocities and Masses
17(1)
1.5.3 True Orbit for Visual Binaries
18(1)
1.5.4 Eclipsing Binaries
19(1)
1.6 Mass-Luminosity Relationships
20(2)
1.7 Summary of Physical Quantities for Stars
22(1)
1.8 Proper Motion and Space Velocities
22(1)
1.9 Stellar Populations
23(2)
1.9.1 Population I and Population II
23(1)
1.9.2 Population III
24(1)
1.10 Variable Stars and Period-Luminosity Relations
25(4)
1.10.1 Cepheid Variables
25(1)
1.10.2 RR Lyra Variables
26(1)
1.10.3 Pulsational Instabilities
27(1)
1.10.4 Pulsations and Free-Fall Timescales
28(1)
Background and Further Reading
29(1)
Problems
29(3)
2 The Hertzsprung-Russell Diagram
32(21)
2.1 Spectral Classes
32(9)
2.1.1 Excitation and the Boltzmann Formula
32(1)
2.1.2 Ionization and the Saha Equations
33(2)
2.1.3 Ionization of Hydrogen and Helium
35(1)
2.1.4 Optimal Temperatures for Spectral Lines
36(2)
2.1.5 The Spectral Sequence
38(3)
2.2 HR Diagram for Stars Near the Sun
41(2)
2.2.1 Solving the Distance Problem
41(1)
2.2.2 Features of the HR Diagram
42(1)
2.3 HR Diagram for Clusters
43(2)
2.4 Luminosity Classes
45(3)
2.4.1 Pressure Broadening of Spectral Lines
46(1)
2.4.2 Inferring Luminosity Class from Surface Density
47(1)
2.5 Spectroscopic Parallax
48(1)
2.6 The HR Diagram and Stellar Evolution
49(1)
Background and Further Reading
49(1)
Problems
49(4)
3 Stellar Equations of State
53(33)
3.1 Equations of State
53(1)
3.2 The Pressure Integral
54(1)
3.3 Ideal Gas Equation of State
54(4)
3.3.1 Internal Energy
56(1)
3.3.2 The Adiabatic Index
57(1)
3.4 Mean Molecular Weights
58(5)
3.4.1 Concentration Variables
59(1)
3.4.2 Partially Ionized Gases
59(1)
3.4.3 Fully-Ionized Gases
60(1)
3.4.4 Shorthand Notation and Approximations
61(2)
3.5 Polytropic Equations of State
63(2)
3.5.1 Polytropic Processes
63(1)
3.5.2 Properties of Polytropes
63(2)
3.6 Adiabatic Equations of State
65(1)
3.7 Equations of State for Degenerate Gases
66(8)
3.7.1 Pressure Ionization
66(3)
3.7.2 Distinguishing Classical and Quantum Gases
69(1)
3.7.3 Nonrelativistic Classical and Quantum Gases
70(2)
3.7.4 Ultrarelativistic Classical and Quantum Gases
72(1)
3.7.5 Transition from a Classical to Quantum Gas
72(2)
3.8 The Degenerate Electron Gas
74(3)
3.8.1 Fermi Momentum and Fermi Energy
74(1)
3.8.2 Equation of State for Nonrelativistic Electrons
75(1)
3.8.3 Equation of State for Ultrarelativistic Electrons
76(1)
3.9 High Gas Density and Stellar Structure
77(1)
3.10 Equation of State for Radiation
78(1)
3.11 Matter and Radiation Mixtures
79(2)
3.11.1 Mixtures of Ideal Gases and Radiation
79(1)
3.11.2 Adiabatic Systems of Gas and Radiation
79(1)
3.11.3 Radiation and Gravitational Stability
80(1)
Background and Further Reading
81(1)
Problems
81(5)
4 Hydrostatic and Thermal Equilibrium
86(19)
4.1 Newtonian Gravitation
86(1)
4.2 Conditions for Hydrostatic Equilibrium
86(2)
4.3 Lagrangian and Eulerian Descriptions
88(3)
4.3.1 Lagrangian Formulation of Hydrostatics
88(1)
4.3.2 Contrasting Lagrangian and Eulerian Descriptions
89(2)
4.4 Dynamical Timescales
91(1)
4.5 The Virial Theorem for an Ideal Gas
92(2)
4.6 Thermal Equilibrium
94(1)
4.7 Total Energy for a Star
95(1)
4.8 Stability and Heat Capacity
96(1)
4.8.1 Temperature Response to Energy Fluctuations
96(1)
4.8.2 Heating Up while Cooling Down
97(1)
4.9 The Kelvin-Helmholtz Timescale
97(4)
Background and Further Reading
101(1)
Problems
101(4)
5 Thermonuclear Reactions in Stars
105(26)
5.1 Nuclear Energy Sources
105(5)
5.1.1 The Curve of Binding Energy
105(2)
5.1.2 Masses and Mass Excesses
107(1)
5.1.3 Q-Values
108(1)
5.1.4 Efficiency of Hydrogen Burning
109(1)
5.2 Thermonuclear Hydrogen Burning
110(4)
5.2.1 The Proton-Proton Chains
110(1)
5.2.2 The CNO Cycle
111(2)
5.2.3 Competition of PP Chains and the CNO Cycle
113(1)
5.3 Cross Sections and Reaction Rates
114(1)
5.3.1 Reaction Cross Sections
114(1)
5.3.2 Rates from Cross Sections
115(1)
5.4 Thermally Averaged Reaction Rates
115(1)
5.5 Parameterization of Cross Sections
116(1)
5.6 Nonresonant Cross Sections
117(4)
5.6.1 Coulomb Barriers
117(1)
5.6.2 Barrier Penetration Factors
118(1)
5.6.3 Astrophysical S-Factors
119(1)
5.6.4 The Gamow Window
120(1)
5.7 Resonant Cross Sections
121(2)
5.8 Calculations with Rate Libraries
123(1)
5.9 Total Rate of Energy Production
123(1)
5.10 Temperature and Density Exponents
123(1)
5.11 Neutron Reactions and Weak Interactions
124(3)
5.12 Reaction Selection Rules
127(1)
5.12.1 Angular Momentum Conservation
127(1)
5.12.2 Isotopic Spin Conservation
127(1)
5.12.3 Parity Conservation
127(1)
Background and Further Reading
128(1)
Problems
129(2)
6 Stellar Burning Processes
131(22)
6.1 Reactions of the Proton-Proton Chains
131(4)
6.1.1 Reactions of PP-I
131(2)
6.1.2 Branching for PP-II and PP-III
133(1)
6.1.3 Effective Q-Values
134(1)
6.2 Reactions of the CNO Cycle
135(3)
6.2.1 The CNO Cycle in Operation
136(1)
6.2.2 Rate of CNO Energy Production
137(1)
6.3 The Triple-α Process
138(5)
6.3.1 Equilibrium Population of 8Be
139(1)
6.3.2 Formation of the Excited State in 12C
140(1)
6.3.3 Formation of the Ground State in 12C
141(1)
6.3.4 Energy Production in the Triple-α Reaction
142(1)
6.4 Helium Burning to C, O, and Ne
143(4)
6.4.1 Oxygen and Neon Production
143(3)
6.4.2 The Outcome of Helium Burning
146(1)
6.5 Advanced Burning Stages
147(4)
6.5.1 Carbon, Oxygen, and Neon Burning
147(1)
6.5.2 Silicon Burning
148(3)
6.6 Timescales for Advanced Burning
151(1)
Background and Further Reading
151(1)
Problems
151(2)
7 Energy Transport in Stars
153(35)
7.1 Modes of Energy Transport
153(1)
7.2 Diffusion of Energy
154(2)
7.3 Energy Transport by Conduction
156(1)
7.4 Radiative Energy Transport
157(5)
7.4.1 Thomson Scattering
157(1)
7.4.2 Conduction in Degenerate Matter
158(1)
7.4.3 Absorption of Photons
158(1)
7.4.4 Stellar Opacities
159(1)
7.4.5 General Contributions to Stellar Opacity
160(2)
7.5 Energy Transport by Convection
162(1)
7.6 Conditions for Convective Instability
163(4)
7.6.1 The Schwarzschild Instability
164(1)
7.6.2 The Ledoux Instability
165(1)
7.6.3 Salt-Finger Instability
166(1)
7.7 Critical Temperature Gradient for Convection
167(3)
7.7.1 Convection and the Adiabatic Index
168(1)
7.7.2 Convection and the Pressure Gradient
169(1)
7.8 Stellar Temperature Gradients
170(1)
7.8.1 Choice between Radiative or Convective Transport
170(1)
7.8.2 Radiative Temperature Gradients
171(1)
7.9 Mixing-Length Treatment of Convection
171(4)
7.9.1 Pressure Scale Height
172(1)
7.9.2 The Mixing-Length Philosophy
173(1)
7.9.3 Analysis of Solar Convection
174(1)
7.10 Examples of Stellar Convective Regions
175(3)
7.10.1 Convection in Stellar Cores
175(2)
7.10.2 Surface Ionization Zones
177(1)
7.11 Energy Transport by Neutrino Emission
178(7)
7.11.1 Neutrino Production Mechanisms
178(4)
7.11.2 Classification and Rates
182(2)
7.11.3 Coherent Neutrino Scattering
184(1)
Background and Further Reading
185(1)
Problems
185(3)
8 Summary of Stellar Equations
188(11)
8.1 The Basic Equations Governing Stars
188(2)
8.1.1 Hydrostatic Equilibrium
188(1)
8.1.2 Luminosity
189(1)
8.1.3 Temperature Gradient
189(1)
8.1.4 Changes in Isotopic Composition
189(1)
8.1.5 Equation of State
190(1)
8.2 Solution of the Stellar Equations
190(1)
8.3 Important Stellar Timescales
191(1)
8.4 Hydrostatic Equilibrium for Polytropes
192(4)
8.4.1 Lane-Emden Equation and Solutions
193(2)
8.4.2 Computing Physical Quantifies
195(1)
8.4.3 Limitations of the Lane-Emden Approximation
196(1)
8.5 Numerical Solution of the Stellar Equations
196(1)
Background and Further Reading
197(1)
Problems
197(2)
Part II Stellar Evolution 199(200)
9 The Formation of Stars
201(27)
9.1 Evidence for Starbirth in Nebulae
201(2)
9.2 Jeans Criterion for Gravitational Collapse
203(1)
9.3 Fragmentation of Collapsing Clouds
204(2)
9.4 Stability in Adiabatic Approximation
206(1)
9.4.1 Dependence on Adiabatic Exponents
206(1)
9.4.2 Physical Interpretation
207(1)
9.5 The Collapse of a Protostar
207(2)
9.5.1 Initial Free-Fall Collapse
208(1)
9.5.2 A Little More Realism
209(1)
9.6 Onset of Hydrostatic Equilibrium
209(3)
9.7 Termination of Fragmentation
212(1)
9.8 Hayashi Tracks
212(2)
9.8.1 Fully Convective Stars
212(1)
9.8.2 Development of a Radiative Core
213(1)
9.8.3 Dependence on Composition and Mass
214(1)
9.9 Limiting Lower Mass for Stars
214(1)
9.10 Brown Dwarfs
215(2)
9.10.1 Spectroscopic Signatures
216(1)
9.10.2 Stars, Brown Dwarfs, and Planets
217(1)
9.11 Limiting Upper Mass for Stars
217(3)
9.11.1 Eddington Luminosity
218(1)
9.11.2 Estimate of Upper Limiting Mass
218(2)
9.12 The Initial Mass Function
220(4)
9.13 Protoplanetary Disks
221(1)
9.14 Exoplanets
222(1)
9.14.1 The Doppler Spectroscopy Method
223(1)
9.14.2 Transits of Extrasolar Planets
224(1)
Background and Further Reading
224(1)
Problems
224(4)
10 Life and Times on the Main Sequence
228(25)
10.1 The Standard Solar Model
228(5)
10.1.1 Composition of the Sun
229(1)
10.1.2 Energy Generation and Composition Changes
229(1)
10.1.3 Hydrostatic Equilibrium
229(1)
10.1.4 Energy Transport
230(1)
10.1.5 Constraints and Solution
230(3)
10.2 Helioseismology
233(3)
10.2.1 Solar p-Modes and g-Modes
233(1)
10.2.2 Surface Vibrations and the Solar Interior
233(3)
10.3 Solar Neutrino Production
236(2)
10.3.1 Sources of Solar Neutrinos
236(1)
10.3.2 Testing the Standard Solar Model with Neutrinos
237(1)
10.4 The Solar Electron-Neutrino Deficit
238(4)
10.4.1 The Davis Chlorine Experiment
238(1)
10.4.2 The Gallium Experiments
239(1)
10.4.3 Super Kamiokande
239(2)
10.4.4 Astrophysics and Particle Physics Explanations
241(1)
10.5 Evolution of Stars on the Main Sequence
242(1)
10.6 Timescale for Main Sequence Lifetimes
243(2)
10.7 Evolutionary Timescales
245(1)
10.8 Evolution Away from the Main Sequence
246(4)
10.8.1 Three Categories of Post Main Sequence Evolution
247(1)
10.8.2 Examples of Post Main Sequence Evolution
247(3)
Background and Further Reading
250(1)
Problems
250(3)
11 Neutrino Flavor Oscillations
253(18)
11.1 Overview of the Solar Neutrino Problem
253(1)
11.2 Weak Interactions and Neutrino Physics
254(5)
11.2.1 Matter and Force Fields of the Standard Model
254(2)
11.2.2 Masses for Particles of the Standard Model
256(1)
11.2.3 Charged and Neutral Currents
257(2)
11.3 Flavor Mixing
259(1)
11.3.1 Flavor Mixing in the Quark Sector
259(1)
11.3.2 Flavor Mixing in the Leptonic Sector
259(1)
11.4 Implications of a Finite Neutrino Mass
260(1)
11.5 Neutrino Vacuum Oscillations
260(5)
11.5.1 Mixing for Two Neutrino Flavors
261(1)
11.5.2 The Vacuum Oscillation Length
262(1)
11.5.3 Time-Averaged or Classical Probabilities
263(2)
11.6 Neutrino Oscillations with Three Flavors
265(3)
11.6.1 CP Violation in Neutrino Oscillations
266(1)
11.6.2 The Neutrino Mass Hierarchy
267(1)
11.6.3 Recovering 2-Flavor Mixing
267(1)
11.7 Neutrino Masses and Particle Physics
268(1)
Background and Further Reading
268(1)
Problems
268(3)
12 Solar Neutrinos and the MSW Effect
271(26)
12.1 Propagation of Neutrinos in Matter
271(3)
12.1.1 Matrix Elements for Interaction with Matter
271(1)
12.1.2 The Effective Neutrino Mass in Medium
272(2)
12.2 The Mass Matrix
274(2)
12.2.1 Propagation of Left-Handed Neutrinos
274(1)
12.2.2 Evolution in the Flavor Basis
275(1)
12.2.3 Propagation in Matter
276(1)
12.3 Solutions in Matter
276(4)
12.3.1 Mass Eigenvalues for Constant Density
277(1)
12.3.2 The Matter Mixing Angle theta m
277(1)
12.3.3 The Matter Oscillation Length Lm
278(1)
12.3.4 Flavor Conversion in Constant-Density Matter
279(1)
12.4 The MSW Resonance Condition
280(2)
12.5 Resonant Flavor Conversion
282(3)
12.6 Propagation in Matter of Varying Density
285(1)
12.7 The Adiabatic Criterion
286(1)
12.8 MSW Neutrino Flavor Conversion
287(3)
12.8.1 Flavor Conversion in Adiabatic Approximation
287(1)
12.8.2 Adiabatic Conversion and the Mixing Angle
288(1)
12.8.3 Resonant Conversion for Large or Small theta
289(1)
12.8.4 Energy Dependence of Flavor Conversion
290(1)
12.9 Resolution of the Solar Neutrino Problem
290(5)
12.9.1 Super-K Observation of Flavor Oscillation
291(1)
12.9.2 SNO Observation of Neutral Current Interactions
291(1)
12.9.3 KamLAND Constraints on Mixing Angles
292(2)
12.9.4 Large Mixing Angles and the MSW Mechanism
294(1)
12.9.5 A Tale of Large and Small Mixing Angles
294(1)
Background and Further Reading
295(1)
Problems
295(2)
13 Evolution of Lower-Mass Stars
297(27)
13.1 Endpoints of Stellar Evolution
297(1)
13.2 Shell Burning
298(2)
13.3 Stages of Red Giant Evolution
300(2)
13.4 The Red Giant Branch
302(2)
13.4.1 The Schonberg-Chandrasekhar Limit
303(1)
13.4.2 Crossing the Hertzsprung Gap
303(1)
13.5 Helium Ignition
304(2)
13.5.1 Core Equation of State and Helium Ignition
304(1)
13.5.2 Thermonuclear Runaways in Degenerate Matter
305(1)
13.5.3 The Helium Flash
305(1)
13.6 Horizontal Branch Evolution
306(1)
13.6.1 Life on the Helium Main Sequence
306(1)
13.6.2 Leaving the Horizontal Branch
306(1)
13.7 Asymptotic Giant Branch Evolution
307(8)
13.7.1 Thermal Pulses
308(2)
13.7.2 Slow Neutron Capture
310(4)
13.7.3 Development of Deep Convective Envelopes
314(1)
13.7.4 Mass Loss
314(1)
13.8 Ejection of the Envelope
315(1)
13.9 White Dwarfs and Planetary Nebulae
316(1)
13.10 Stellar Dredging Operations
317(2)
13.11 The Sun's Red Giant Evolution
319(2)
13.12 Overview for Low-Mass Stars
321(1)
Background and Further Reading
321(1)
Problems
321(3)
14 Evolution of Higher-Mass Stars
324(13)
14.1 Unique Features of More Massive Stars
324(1)
14.2 Advanced Burning Stages in Massive Stars
325(1)
14.3 Envelope Loss from Massive Stars
326(1)
14.3.1 Wolf-Rayet Stars
326(1)
14.3.2 The Strange Case of η Carinae
327(1)
14.4 Neutrino Cooling of Massive Stars
327(3)
14.4.1 Local and Nonlocal Cooling
329(1)
14.4.2 Neutrino Cooling and the Pace of Stellar Evolution
329(1)
14.5 Massive Population III Stars
330(1)
14.6 Evolutionary Endpoints for Massive Stars
330(3)
14.6.1 Observational and Theoretical Characteristics
331(1)
14.6.2 Black Holes from Failed Supernovae?
331(2)
14.6.3 Gravitational Waves and Stellar Evolution
333(1)
14.7 Summary: Evolution after the Main Sequence
333(1)
14.8 Stellar Lifecycles
333(2)
Background and Further Reading
335(1)
Problems
335(2)
15 Stellar Pulsations and Variability
337(9)
15.1 The Instability Strip
337(1)
15.2 Adiabatic Radial Pulsations
337(3)
15.3 Pulsating Variables as Heat Engines
340(1)
15.4 Non-adiabatic Radial Pulsations
340(4)
15.4.1 Thermodynamics of Sustained Pulsation
340(2)
15.4.2 Opacity and the k-Mechanism
342(1)
15.4.3 Partial Ionization Zones and the Instability Strip
342(2)
15.4.4 The elementof-Mechanism and Massive Stars
344(1)
15.5 Non-radial Pulsation
344(1)
Background and Further Reading
345(1)
Problems
345(1)
16 White Dwarfs and Neutron Stars
346(32)
16.1 Properties of White Dwarfs
346(3)
16.1.1 Density and Gravity
347(1)
16.1.2 Equation of State
347(1)
16.1.3 Ingredients of a White Dwarf Description
348(1)
16.2 Polytropic Models of White Dwarfs
349(6)
16.2.1 Low-Mass White Dwarfs
349(1)
16.2.2 High-Mass White Dwarfs
350(2)
16.2.3 Heuristic Derivation of the Chandrasekhar Limit
352(2)
16.2.4 Effective Adiabatic Index and Gravitational Stability
354(1)
16.3 Internal Structure of White Dwarfs
355(1)
16.3.1 Temperature Variation
355(1)
16.3.2 An Insulating Blanket around a Metal Ball
356(1)
16.4 Cooling of White Dwarfs
356(2)
16.5 Crystallization of White Dwarfs
358(1)
16.6 Beyond White Dwarf Masses
359(1)
16.7 Basic Properties of Neutron Stars
359(6)
16.7.1 Sizes and Masses
360(1)
16.7.2 Internal Structure
361(1)
16.7.3 Cooling of Neutron Stars
362(2)
16.7.4 Evidence for Superfluidity in Neutron Stars
364(1)
16.8 Hydrostatic Equilibrium in General Relativity
365(2)
16.8.1 The Oppenheimer-Volkov Equations
366(1)
16.8.2 Comparison with Newtonian Gravity
366(1)
16.9 Pulsars
367(7)
16.9.1 The Pulsar Mechanism
367(1)
16.9.2 Pulsar Magnetic Fields
368(1)
16.9.3 The Crab Pulsar
369(1)
16.9.4 Pulsar Spindown and Glitches
369(1)
16.9.5 Millisecond Pulsars
370(2)
16.9.6 Binary Pulsars
372(2)
16.10 Magnetars
374(1)
Background and Further Reading
375(1)
Problems
375(3)
17 Black Holes
378(21)
17.1 The Failure of Newtonian Gravity
378(1)
17.2 The General Theory of Relativity
379(2)
17.2.1 General Covariance
379(1)
17.2.2 The Principle of Equivalence
379(1)
17.2.3 Curved Spacetime and Tensors
380(1)
17.2.4 Curvature and the Strength of Gravity
381(1)
17.3 Some Important General Relativistic Solutions
381(5)
17.3.1 The Einstein Equation
382(1)
17.3.2 Line Elements and Metrics
382(1)
17.3.3 Minkowski Spacetime
383(1)
17.3.4 Schwarzschild Spacetime
384(1)
17.3.5 Kerr Spacetime
385(1)
17.4 Evidence for Black Holes
386(6)
17.4.1 Compact Objects in X-ray Binaries
387(2)
17.4.2 Causality Constraints
389(1)
17.4.3 The Black Hole Candidate Cygnus X-1
389(3)
17.5 Black Holes and Gravitational Waves
392(1)
17.6 Supermassive Black Holes
392(1)
17.7 Intermediate-Mass and Mini Black Holes
393(1)
17.8 Proof of the Pudding: Event Horizons
394(2)
17.9 Some Measured Black Hole Masses
396(1)
Background and Further Reading
396(1)
Problems
397(2)
Part III Accretion, Mergers, and Explosions 399(100)
18 Accreting Binary Systems
401(20)
18.1 Classes of Accretion
401(1)
18.2 Roche-lobe Overflow
402(3)
18.2.1 The Roche Potential
402(1)
18.2.2 Lagrange Points
403(1)
18.2.3 Roche Lobes
404(1)
18.3 Classification of Binary Star Systems
405(1)
18.4 Accretion Streams and Accretion Disks
406(4)
18.4.1 Gas Motion
406(1)
18.4.2 Initial Accretion Velocity
406(2)
18.4.3 General Properties of Roche-Overflow Accretion
408(1)
18.4.4 Disk Dynamics
408(2)
18.5 Wind-Driven Accretion
410(1)
18.6 Classification of X-Ray Binaries
411(1)
18.6.1 High-Mass X-Ray Binaries
411(1)
18.6.2 Low-Mass X-Ray Binaries
411(1)
18.6.3 Suppression of Accretion for Intermediate Masses
412(1)
18.7 Accretion Power
412(3)
18.7.1 Maximum Energy Release in Accretion
412(1)
18.7.2 Limits on Accretion Rates
413(1)
18.7.3 Accretion Temperatures
413(1)
18.7.4 Maximum Efficiency for Energy Extraction
414(1)
18.7.5 Storing Energy in Accretion Disks
415(1)
18.8 Some Accretion-Induced Phenomena
415(1)
18.9 Accretion and Stellar Evolution
416(2)
18.9.1 The Algol Paradox
416(2)
18.9.2 Blue Stragglers
418(1)
Background and Further Reading
418(1)
Problems
418(3)
19 Nova Explosions and X-Ray Bursts
421(8)
19.1 The Nova Mechanism
421(4)
19.1.1 The Hot CNO Cycle
423(2)
19.1.2 Recurrence of Novae
425(1)
19.1.3 Nucleosynthesis in Novae
425(1)
19.2 The X-Ray Burst Mechanism
425(2)
19.2.1 Rapid Proton Capture
426(1)
19.2.2 Nucleosynthesis and the rp-Process
426(1)
Background and Further Reading
427(1)
Problems
427(2)
20 Supernovae
429(31)
20.1 Classification of Supernovae
429(5)
20.1.1 Type Ia
430(1)
20.1.2 Type Ib and Type Ic
431(2)
20.1.3 Type II
433(1)
20.2 Thermonuclear Supernovae
434(6)
20.2.1 The Single-Degenerate Mechanism
435(1)
20.2.2 The Double-Degenerate Mechanism
435(2)
20.2.3 Thermonuclear Burning in Extreme Conditions
437(1)
20.2.4 Element and Energy Production
438(1)
20.2.5 Late-Time Observables
439(1)
20.3 Core Collapse Supernovae
440(10)
20.3.1 The "Supernova Problem"
441(1)
20.3.2 The Death of Massive Stars
441(1)
20.3.3 Sequence of Events in Core Collapse
442(4)
20.3.4 Neutrino Reheating
446(1)
20.3.5 Convection and Neutrino Reheating
447(1)
20.3.6 Convectively Unstable Regions in Supernovae
448(1)
20.3.7 Remnants of Core Collapse
449(1)
20.4 Supernova 1987A
450(6)
20.4.1 The Neutrino Burst
450(1)
20.4.2 The Progenitor was Blue!
451(2)
20.4.3 Radioactive Decay and the Lightcurve
453(1)
20.4.4 Evolution of the Supernova Remnant
454(1)
20.4.5 Where is the Neutron Star?
455(1)
20.5 Heavy Elements and the r-Process
456(2)
Background and Further Reading
458(1)
Problems
458(2)
21 Gamma-Ray Bursts
460(18)
21.1 The Sky in Gamma-Rays
460(3)
21.2 Localization of Gamma-Ray Bursts
463(1)
21.3 Generic Characteristics of Gamma-Ray Burst
464(3)
21.4 The Importance of Ultrarelativistic Jets
467(1)
21.4.1 Optical Depth for a Nonrelativistic Burst
467(1)
21.4.2 Optical Depth for an Ultrarelativistic Burst
467(1)
21.4.3 Confirmation of Large Lorentz Factors
468(1)
21.5 Association of GRBs with Galaxies
468(1)
21.6 Mechanisms for the Central Engine
469(1)
21.7 Long-Period GRB and Supernovae
470(1)
21.7.1 Types Ib and Ic Supernovae
470(1)
21.7.2 Role of Metallicity
470(1)
21.8 Collapsar Model of Long-Period Bursts
471(3)
21.9 Neutron Star Mergers and Short-Period Bursts
474(2)
21.10 Multimessenger Astronomy
476(1)
Background and Further Reading
476(1)
Problems
476(2)
22 Gravitational Waves and Stellar Evolution
478(21)
22.1 Gravitational Waves
478(2)
22.2 Sample Gravitational Waveforms
480(2)
22.3 The Gravitational Wave Event GW150914
482(4)
22.3.1 Observed Waveforms
483(1)
22.3.2 The Black Hole Merger
484(2)
22.4 A New Probe of Massive-Star Evolution
486(4)
22.4.1 Formation of Massive Black Hole Binaries
486(1)
22.4.2 Gravitational Waves and Massive Binary Evolution
487(2)
22.4.3 Formation of Supermassive Black Holes
489(1)
22.5 Listening to Multiple Messengers
490(1)
22.6 Gravitational Waves from Neutron Star Mergers
491(6)
22.6.1 New Insights Associated with GW170817
493(2)
22.6.2 The Kilonova Associated with GW170817
495(2)
22.7 Gravitational Wave Sources and Detectors
497(1)
Background and Further Reading
497(1)
Problems
497(2)
Appendix A Constants 499(3)
Appendix B Natural Units 502(3)
Appendix C Mean Molecular Weights 505(2)
Appendix D Reaction Libraries 507(9)
Appendix E A Mixing-Length Model 516(3)
Appendix F Quantum Mechanics 519(3)
Appendix G Using arXiv and ADS 522(2)
References 524(10)
Index 534
Mike Guidry is Professor of Physics and Astronomy at the University of Tennessee. His current research is focused on the development of new algorithms to solve large sets of differential equations, and applications of Lie algebras to strongly-correlated electronic systems. He has written five textbooks and authored more than 120 journal publications on a broad variety of topics. He previously held the role of Lead Technology Developer for several major college textbooks in introductory physics, astronomy, biology, genetics, and microbiology. He has won multiple teaching awards and is responsible for a variety of important science outreach initiatives.