|
Part I Particle Filtering and Parameter Learning in Nonlinear State-Space Models |
|
|
|
1 Adaptive Filtering, Nonlinear State-Space Models, and Applications in Finance and Econometrics |
|
|
3 | (20) |
|
|
|
|
3 | (1) |
|
1.2 Particle Filters in Nonlinear State-Space Models |
|
|
4 | (2) |
|
|
4 | (1) |
|
1.2.2 Auxiliary Particle Filter |
|
|
5 | (1) |
|
1.2.3 Residual Bernoulli Resampling |
|
|
6 | (1) |
|
1.3 Particle Filters with Sequential Parameter Estimation |
|
|
6 | (3) |
|
1.3.1 Liu and West's Filter |
|
|
7 | (1) |
|
|
8 | (1) |
|
|
8 | (1) |
|
|
9 | (1) |
|
1.4 A New Approach to Adaptive Particle Filtering |
|
|
9 | (5) |
|
1.4.1 A New MCMC Approach to Sequential Parameter Estimation |
|
|
10 | (2) |
|
1.4.2 Adaptive Particle Filters and Asymptotic Theory |
|
|
12 | (2) |
|
1.5 Applications in Finance and Economics |
|
|
14 | (6) |
|
1.5.1 Frailty Models for Corporate Defaults |
|
|
14 | (3) |
|
1.5.2 Stochastic Volatility with Contemporaneous Jumps |
|
|
17 | (2) |
|
1.5.3 State-Space Models for High-Frequency Transaction Data |
|
|
19 | (1) |
|
1.5.4 Other Applications in Finance and Economics |
|
|
20 | (1) |
|
|
20 | (3) |
|
|
20 | (3) |
|
2 The Extended Liu and West Filter: Parameter Learning in Markov Switching Stochastic Volatility Models |
|
|
23 | (40) |
|
|
|
|
23 | (5) |
|
|
24 | (2) |
|
2.1.2 Particle Filters: A Brief Review |
|
|
26 | (2) |
|
2.2 Particle Filters with Parameter Learning |
|
|
28 | (4) |
|
|
28 | (2) |
|
2.2.2 Sufficient Statistics |
|
|
30 | (2) |
|
2.3 Analysis and Results: Simulation Study |
|
|
32 | (20) |
|
|
33 | (1) |
|
2.3.2 Exact Estimation Path |
|
|
33 | (3) |
|
2.3.3 Estimate Evaluation |
|
|
36 | (12) |
|
|
48 | (2) |
|
|
50 | (2) |
|
2.4 Analysis and Results: Real Data Applications |
|
|
52 | (7) |
|
|
53 | (2) |
|
|
55 | (4) |
|
|
59 | (4) |
|
|
60 | (3) |
|
3 A Survey of Implicit Particle Filters for Data Assimilation |
|
|
63 | (28) |
|
|
|
|
|
63 | (2) |
|
3.2 Implicit Particle Filters |
|
|
65 | (6) |
|
3.2.1 Linear Observation Function and Gaussian Noise |
|
|
67 | (1) |
|
3.2.2 Sparse Observations |
|
|
68 | (1) |
|
3.2.3 Models with Partial Noise |
|
|
69 | (1) |
|
3.2.4 Combined State and Parameter Estimation |
|
|
70 | (1) |
|
3.3 Implementations of the Implicit Particle Filter |
|
|
71 | (2) |
|
3.3.1 Solution of the Implicit Equation via Quadratic Approximation |
|
|
71 | (1) |
|
3.3.2 Solution of the Implicit Equation via Random Maps |
|
|
72 | (1) |
|
3.4 Comparison with Other Sequential Monte Carlo Schemes |
|
|
73 | (4) |
|
3.4.1 Comparison with the SIR Filter |
|
|
74 | (1) |
|
3.4.2 Comparison with Optimal Importance Function Filters |
|
|
75 | (1) |
|
3.4.3 Comparison with the Kalman Filter and with Variational Data Assimilation Methods |
|
|
76 | (1) |
|
|
77 | (8) |
|
|
77 | (1) |
|
3.5.2 Stochastic Volatility Model |
|
|
78 | (1) |
|
3.5.3 The Stochastic Lorenz Attractor |
|
|
78 | (3) |
|
3.5.4 The Stochastic Kuramoto-Sivashinsky Equation |
|
|
81 | (2) |
|
3.5.5 Application to Geomagnetic Data Assimilation |
|
|
83 | (1) |
|
3.5.6 Assimilation of Ocean Color Data from NASA's SeaWiFS Satellite |
|
|
84 | (1) |
|
|
85 | (6) |
|
|
86 | (5) |
|
Part II Linear State-Space Models in Macroeconomics and Finance |
|
|
|
4 Model Uncertainty, State Uncertainty, and State-Space Models |
|
|
91 | (22) |
|
|
|
|
|
91 | (1) |
|
4.2 Linear-Quadratic-Gaussian State-Space Models |
|
|
92 | (2) |
|
4.3 Incorporating Model Uncertainty and State Uncertainty |
|
|
94 | (4) |
|
4.3.1 Introducing Model Uncertainty |
|
|
94 | (1) |
|
4.3.2 Introducing State Uncertainty |
|
|
95 | (3) |
|
|
98 | (11) |
|
4.4.1 Explaining Current Account Dynamics |
|
|
98 | (3) |
|
4.4.2 Resolving the International Consumption Puzzle |
|
|
101 | (3) |
|
4.4.3 Other Possible Applications |
|
|
104 | (1) |
|
4.4.4 Quantifying Model Uncertainty |
|
|
105 | (2) |
|
4.4.5 Discussions: Risk-Sensitivity and Robustness Under Rational Inattention |
|
|
107 | (2) |
|
|
109 | (4) |
|
|
109 | (1) |
|
A.1 Solving the Current Account Model Explicitly Under Model Uncertainty |
|
|
109 | (2) |
|
|
111 | (2) |
|
5 Hong Kong Inflation Dynamics: Trend and Cycle Relationships with the USA and China |
|
|
113 | (20) |
|
|
|
113 | (2) |
|
|
115 | (2) |
|
|
117 | (6) |
|
|
123 | (7) |
|
|
130 | (3) |
|
|
131 | (2) |
|
6 The State Space Representation and Estimation of a Time-Varying Parameter VAR with Stochastic Volatility |
|
|
133 | (14) |
|
|
|
|
133 | (1) |
|
6.2 State Space Representation and Estimation of VARs |
|
|
134 | (5) |
|
6.2.1 State Space Representation |
|
|
134 | (1) |
|
|
135 | (4) |
|
6.3 Application: A Time-Varying Parameter VAR with Stochastic Volatility for Three US Macroeconomic Variables |
|
|
139 | (5) |
|
|
139 | (1) |
|
6.3.2 Posterior Simulation |
|
|
140 | (1) |
|
6.3.3 Posterior Estimates of Time-Varying Trends and Volatility |
|
|
140 | (4) |
|
|
144 | (3) |
|
|
145 | (2) |
|
7 A Statistical Investigation of Stock Return Decomposition Based on the State-Space Framework |
|
|
147 | (22) |
|
|
|
|
147 | (4) |
|
7.2 VAR Variance Decomposition of the Stock Prices |
|
|
151 | (3) |
|
7.3 The State-Space Model for Decomposing Stock Prices |
|
|
154 | (6) |
|
7.4 The Weak Identification and the Corrected Inference |
|
|
160 | (3) |
|
|
163 | (6) |
|
|
164 | (5) |
|
Part III Hidden Markov Models, Regime-Switching, and Mathematical Finance |
|
|
|
8 A HMM Intensity-Based Credit Risk Model and Filtering |
|
|
169 | (16) |
|
|
|
|
169 | (2) |
|
8.2 A HMM Frailty-Based Default Model |
|
|
171 | (2) |
|
8.3 Filtering Equations for the Hidden Dynamic Frailty Factor |
|
|
173 | (4) |
|
8.4 A Robust Filter-Based EM Algorithm |
|
|
177 | (3) |
|
|
180 | (1) |
|
8.6 Default Probabilities |
|
|
181 | (1) |
|
|
182 | (3) |
|
|
183 | (2) |
|
9 Yield Curve Modelling Using a Multivariate Higher-Order HMM |
|
|
185 | (20) |
|
|
|
|
185 | (3) |
|
9.2 Filtering and Parameter Estimation |
|
|
188 | (5) |
|
|
193 | (4) |
|
9.4 Forecasting and Error Analysis |
|
|
197 | (5) |
|
|
202 | (3) |
|
|
202 | (3) |
|
10 Numerical Methods for Optimal Annuity Purchasing and Dividend Optimization Strategies under Regime-Switching Models: Review of Recent Results |
|
|
205 | (22) |
|
|
|
|
205 | (2) |
|
10.2 Optimal Annuity-Purchasing Strategies |
|
|
207 | (7) |
|
|
207 | (1) |
|
|
208 | (2) |
|
10.2.3 Constant Hazard Rate |
|
|
210 | (1) |
|
10.2.4 General Hazard Rate |
|
|
211 | (1) |
|
|
212 | (2) |
|
10.3 Optimal Dividend Payment Policies |
|
|
214 | (9) |
|
|
214 | (1) |
|
|
215 | (2) |
|
|
217 | (2) |
|
|
219 | (1) |
|
|
220 | (3) |
|
|
223 | (4) |
|
|
224 | (3) |
|
11 Trading a Mean-Reverting Asset with Regime Switching: An Asymptotic Approach |
|
|
227 | (20) |
|
|
|
|
227 | (2) |
|
|
229 | (4) |
|
11.3 Properties of the Value Functions |
|
|
233 | (2) |
|
11.4 Asymptotic Properties |
|
|
235 | (3) |
|
11.5 Further Approximations |
|
|
238 | (1) |
|
|
239 | (1) |
|
|
240 | (7) |
|
|
242 | (2) |
|
|
244 | (3) |
|
12 CPPI in the Jump-Diffusion Model |
|
|
247 | (32) |
|
|
|
|
247 | (1) |
|
12.2 The Jump-Diffusion Model |
|
|
248 | (5) |
|
|
249 | (2) |
|
12.2.2 Martingale Measure |
|
|
251 | (2) |
|
|
253 | (6) |
|
12.3.1 The constant multiple case |
|
|
253 | (6) |
|
12.3.2 The Time-Varying Multiple Case |
|
|
259 | (1) |
|
12.4 The CPPI Portfolio as a Hedging Tool |
|
|
259 | (12) |
|
|
260 | (4) |
|
12.4.2 Martingale Approach |
|
|
264 | (7) |
|
12.5 Mean-Variance Hedging |
|
|
271 | (4) |
|
|
271 | (2) |
|
|
273 | (2) |
|
|
275 | (4) |
|
|
275 | (4) |
|
Part IV Nonlinear State-Space Models for High Frequency Financial Data |
|
|
|
13 An Asymmetric Information Modeling Framework for Ultra-High Frequency Transaction Data: A Nonlinear Filtering Approach |
|
|
279 | (32) |
|
|
|
279 | (4) |
|
|
283 | (4) |
|
13.2.1 The Information Structure Dynamics |
|
|
283 | (2) |
|
13.2.2 Informed Traders' Signal Extraction |
|
|
285 | (1) |
|
|
286 | (1) |
|
13.3 Bayesian Updating of the Market Maker's Beliefs via Filtering |
|
|
287 | (6) |
|
13.3.1 Construction of a Reference Measure |
|
|
289 | (2) |
|
13.3.2 Filtering Equation |
|
|
291 | (1) |
|
13.3.3 Uniqueness of the System |
|
|
292 | (1) |
|
13.4 Key Implications of the Model |
|
|
293 | (2) |
|
13.4.1 The Quality of the Signal |
|
|
293 | (1) |
|
13.4.2 Informed Traders' Trading Rate |
|
|
294 | (1) |
|
13.4.3 The Price Impact of a Trade |
|
|
294 | (1) |
|
13.5 Parameter Estimation |
|
|
295 | (3) |
|
13.5.1 Maximum Likelihood Estimation |
|
|
296 | (1) |
|
13.5.2 Parameter Estimation for Simulated Data |
|
|
297 | (1) |
|
|
298 | (13) |
|
|
300 | (8) |
|
|
308 | (3) |
|
14 Heterogenous Autoregressive Realized Volatility Model |
|
|
311 | (10) |
|
|
|
|
311 | (1) |
|
14.2 High-Frequency Financial Data and Price Model |
|
|
312 | (1) |
|
14.3 GARCH and Stochastic Volatility Approximations to the Price Model |
|
|
313 | (1) |
|
14.4 The HAR Model for Volatility Processes |
|
|
314 | (1) |
|
14.5 The HAR Model for Realized Volatilities |
|
|
315 | (2) |
|
14.6 The Temporal Aggregation of AR Processes |
|
|
317 | (4) |
|
|
320 | (1) |
|
15 Parameter Estimation via Particle MCMC for Ultra-High Frequency Models |
|
|
321 | (24) |
|
|
|
|
321 | (2) |
|
|
323 | (4) |
|
|
324 | (1) |
|
15.2.2 Micro-Structure Noise |
|
|
324 | (2) |
|
15.2.3 Intrinsic Value Processes |
|
|
326 | (1) |
|
|
327 | (5) |
|
15.3.1 Likelihood Calculation via Simulation |
|
|
327 | (2) |
|
15.3.2 Importance Sampling |
|
|
329 | (1) |
|
15.3.3 Sequential Importance Sampling: Particle Filtering |
|
|
330 | (1) |
|
|
331 | (1) |
|
15.4 Simulation and Empirical Studies |
|
|
332 | (10) |
|
15.4.1 Variance Reduction Effect of Particle Filtering Method |
|
|
332 | (1) |
|
15.4.2 Simulation Study: GBM Case |
|
|
333 | (3) |
|
15.4.3 Comparison Algorithm Under Trading Rules with 1/8 and 1/100 Tick Size |
|
|
336 | (2) |
|
15.4.4 Simulation Study: Jump-Diffusion Case |
|
|
338 | (3) |
|
15.4.5 Real Data Application |
|
|
341 | (1) |
|
|
342 | (3) |
|
|
343 | (2) |
Index |
|
345 | |