Preface |
|
xi | |
Acronyms |
|
xv | |
|
|
1 | (10) |
|
|
2 | (2) |
|
|
4 | (2) |
|
|
6 | (1) |
|
|
7 | (1) |
|
|
8 | (3) |
|
|
11 | (6) |
|
|
11 | (3) |
|
|
11 | (2) |
|
|
13 | (1) |
|
|
13 | (1) |
|
|
14 | (1) |
|
Converting from One Format to Another |
|
|
14 | (1) |
|
Reading fMRI Data into MATLAB |
|
|
15 | (2) |
|
3 Modeling the BOLD Response |
|
|
17 | (24) |
|
Linear Models of the BOLD Response |
|
|
17 | (16) |
|
Methods of Estimating the hrf |
|
|
21 | (1) |
|
Input an Impulse, and Observe the Response |
|
|
21 | (1) |
|
|
22 | (3) |
|
Open the Box; Study the Circuit |
|
|
25 | (1) |
|
|
25 | (3) |
|
Select a Flexible Mathematical Model of the hrf |
|
|
28 | (5) |
|
Nonlinear Models of the BOLD Response |
|
|
33 | (7) |
|
|
40 | (1) |
|
|
41 | (40) |
|
|
42 | (9) |
|
Slice-Timing Correction during Preprocessing |
|
|
43 | (1) |
|
|
43 | (1) |
|
|
44 | (1) |
|
|
45 | (2) |
|
Slice-Timing Correction during Task-Related Statistical Analysis |
|
|
47 | (4) |
|
|
51 | (7) |
|
Coregistering the Functional and Structural Data |
|
|
58 | (5) |
|
|
63 | (5) |
|
|
68 | (5) |
|
|
73 | (4) |
|
Other Preprocessing Steps |
|
|
77 | (3) |
|
|
78 | (1) |
|
|
78 | (1) |
|
|
79 | (1) |
|
|
80 | (1) |
|
5 The General Linear Model |
|
|
81 | (46) |
|
|
81 | (10) |
|
|
84 | (2) |
|
Microlinearity versus Macrolinearity |
|
|
86 | (1) |
|
Using the General Linear Model to Implement the FBR Method |
|
|
87 | (1) |
|
Modeling Baseline Activation and Systematic Non-Task-Related Variation in the BOLD Signal |
|
|
88 | (2) |
|
Designs with Multiple Stimulus Events |
|
|
90 | (1) |
|
|
91 | (6) |
|
|
97 | (2) |
|
A Graphical Convention for Displaying the Design Matrix |
|
|
99 | (1) |
|
|
100 | (4) |
|
|
103 | (1) |
|
Parameter Estimation in the FBR and Correlation Models |
|
|
104 | (3) |
|
Hypothesis Testing via the Construction of Statistical Parametric Maps |
|
|
107 | (11) |
|
Nonparametric Approaches to Hypothesis Testing |
|
|
118 | (1) |
|
|
119 | (4) |
|
Comparing the Correlation and FBR Methods |
|
|
123 | (4) |
|
6 The Multiple Comparisons Problem |
|
|
127 | (32) |
|
The Sidak and Bonferroni Corrections |
|
|
128 | (2) |
|
|
130 | (11) |
|
|
141 | (6) |
|
|
147 | (9) |
|
Cluster-Based Methods Using a Spatial Extent Criterion |
|
|
150 | (3) |
|
Cluster-Based Methods Using a Criterion That Depends on Cluster Height and Spatial Extent |
|
|
153 | (3) |
|
Permutation-Based Solutions to the Multiple Comparisons Problem |
|
|
156 | (1) |
|
|
157 | (1) |
|
|
158 | (1) |
|
|
159 | (26) |
|
|
159 | (3) |
|
Fixed versus Random Factors in the General Linear Model |
|
|
162 | (2) |
|
A Fixed Effects Group Analysis |
|
|
164 | (6) |
|
A Random Effects Group Analysis |
|
|
170 | (5) |
|
Comparing Fixed and Random Effects Analyses |
|
|
175 | (1) |
|
Multiple Factor Experiments |
|
|
176 | (2) |
|
|
178 | (7) |
|
|
185 | (36) |
|
Autocorrelation and Cross-Correlation |
|
|
186 | (7) |
|
Power Spectrum and Cross-Power Spectrum |
|
|
193 | (4) |
|
|
197 | (12) |
|
|
209 | (2) |
|
Using the Phase Spectrum to Determine Causality |
|
|
211 | (8) |
|
|
219 | (2) |
|
|
221 | (24) |
|
Quantitative Measures of Causality |
|
|
226 | (5) |
|
|
231 | (3) |
|
|
234 | (1) |
|
Conditional Granger Causality |
|
|
235 | (7) |
|
Comparing Granger Causality to Coherence Analysis |
|
|
242 | (3) |
|
10 Principal Components Analysis |
|
|
245 | (12) |
|
Principal Components Analysis |
|
|
246 | (2) |
|
|
248 | (3) |
|
Using PCA to Eliminate Noise |
|
|
251 | (5) |
|
|
256 | (1) |
|
11 Independent Component Analysis |
|
|
257 | (34) |
|
The Cocktail-Party Problem |
|
|
257 | (1) |
|
Applying ICA to fMRI Data |
|
|
258 | (8) |
|
|
260 | (1) |
|
Assessing Statistical Independence |
|
|
261 | (2) |
|
The Importance of Non-normality in ICA |
|
|
263 | (1) |
|
|
263 | (3) |
|
|
266 | (11) |
|
Minimizing Mutual Information |
|
|
266 | (1) |
|
|
267 | (1) |
|
|
268 | (1) |
|
Methods That Maximize Non-normality |
|
|
269 | (2) |
|
Maximum Likelihood Approaches |
|
|
271 | (1) |
|
|
272 | (1) |
|
|
272 | (2) |
|
The Infomax Learning Algorithm |
|
|
274 | (3) |
|
|
277 | (4) |
|
Determining the Relative Importance of Each Component |
|
|
278 | (1) |
|
Assigning Meaning to Components |
|
|
279 | (2) |
|
|
281 | (4) |
|
|
285 | (2) |
|
Comparing ICA and GLM Approaches |
|
|
287 | (2) |
|
|
289 | (2) |
|
|
291 | (6) |
|
Pattern Classification Techniques |
|
|
291 | (1) |
|
|
292 | (1) |
|
|
293 | (1) |
|
|
294 | (3) |
|
Appendix A Matrix Algebra Tutorial |
|
|
297 | (18) |
|
Matrices and Their Basic Operations |
|
|
297 | (7) |
|
|
304 | (2) |
|
|
306 | (4) |
|
Eigenvalues and Eigenvectors |
|
|
310 | (5) |
|
|
310 | (3) |
|
|
313 | (2) |
|
Appendix B Multivariate Probability Distributions |
|
|
315 | (6) |
|
Multivariate Normal Distributions |
|
|
316 | (5) |
References |
|
321 | (8) |
Index |
|
329 | |