Atjaunināt sīkdatņu piekrišanu

E-grāmata: Statistical Analysis of fMRI Data

4.15/5 (39 ratings by Goodreads)
(University of California, Santa Barbara)
  • Formāts - PDF+DRM
  • Cena: 110,20 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

An overview of statistical methods for analyzing data from fMRI experiments.

Functional magnetic resonance imaging (fMRI), which allows researchers to observe neural activity in the human brain noninvasively, has revolutionized the scientific study of the mind. An fMRI experiment produces massive amounts of highly complex data; researchers face significant challenges in analyzing the data they collect. This book offers an overview of the most widely used statistical methods of analyzing fMRI data. Every step is covered, from preprocessing to advanced methods for assessing functional connectivity. The goal is not to describe which buttons to push in the popular software packages but to help readers understand the basic underlying logic, the assumptions, the strengths and weaknesses, and the appropriateness of each method.

The book covers all of the important current topics in fMRI data analysis, including the relation of the fMRI BOLD (blood oxygen-level dependent) response to neural activation; basic analyses done in virtually every fMRI article--preprocessing, constructing statistical parametrical maps using the general linear model, solving the multiple comparison problem, and group analyses; the most popular methods for assessing functional connectivity--coherence analysis and Granger causality; two widely used multivariate approaches, principal components analysis and independent component analysis; and a brief survey of other current fMRI methods.

The necessary mathematics is explained at a conceptual level, but in enough detail to allow mathematically sophisticated readers to gain more than a purely conceptual understanding. The book also includes short examples of Matlab code that implement many of the methods described; an appendix offers an introduction to basic Matlab matrix algebra commands (as well as a tutorial on matrix algebra). A second appendix introduces multivariate probability distributions.
Preface xi
Acronyms xv
1 Introduction
1(10)
What Is fMRI?
2(2)
The Scanning Session
4(2)
Experimental Design
6(1)
Data Analysis
7(1)
Software Packages
8(3)
2 Data Formats
11(6)
Data Formats
11(3)
DICOM
11(2)
Analyze
13(1)
NlfTI
13(1)
MINC
14(1)
Converting from One Format to Another
14(1)
Reading fMRI Data into MATLAB
15(2)
3 Modeling the BOLD Response
17(24)
Linear Models of the BOLD Response
17(16)
Methods of Estimating the hrf
21(1)
Input an Impulse, and Observe the Response
21(1)
Deconvolution
22(3)
Open the Box; Study the Circuit
25(1)
Take a Guess
25(3)
Select a Flexible Mathematical Model of the hrf
28(5)
Nonlinear Models of the BOLD Response
33(7)
Conclusions
40(1)
4 Preprocessing
41(40)
Slice-Timing Correction
42(9)
Slice-Timing Correction during Preprocessing
43(1)
Linear Interpolation
43(1)
Spline Interpolation
44(1)
Sine Interpolation
45(2)
Slice-Timing Correction during Task-Related Statistical Analysis
47(4)
Head Motion Correction
51(7)
Coregistering the Functional and Structural Data
58(5)
Normalization
63(5)
Spatial Smoothing
68(5)
Temporal Filtering
73(4)
Other Preprocessing Steps
77(3)
Quality Assurance
78(1)
Distortion Correction
78(1)
Grand Mean Scaling
79(1)
Conclusions
80(1)
5 The General Linear Model
81(46)
The FBR Method
81(10)
Jittering
84(2)
Microlinearity versus Macrolinearity
86(1)
Using the General Linear Model to Implement the FBR Method
87(1)
Modeling Baseline Activation and Systematic Non-Task-Related Variation in the BOLD Signal
88(2)
Designs with Multiple Stimulus Events
90(1)
The Correlation Approach
91(6)
Block Designs
97(2)
A Graphical Convention for Displaying the Design Matrix
99(1)
The General Linear Model
100(4)
Parameter Estimation
103(1)
Parameter Estimation in the FBR and Correlation Models
104(3)
Hypothesis Testing via the Construction of Statistical Parametric Maps
107(11)
Nonparametric Approaches to Hypothesis Testing
118(1)
Percent Signal Change
119(4)
Comparing the Correlation and FBR Methods
123(4)
6 The Multiple Comparisons Problem
127(32)
The Sidak and Bonferroni Corrections
128(2)
Gaussian Random Fields
130(11)
False Discovery Rate
141(6)
Cluster-Based Methods
147(9)
Cluster-Based Methods Using a Spatial Extent Criterion
150(3)
Cluster-Based Methods Using a Criterion That Depends on Cluster Height and Spatial Extent
153(3)
Permutation-Based Solutions to the Multiple Comparisons Problem
156(1)
Voodoo Correlations
157(1)
Conclusions
158(1)
7 Group Analyses
159(26)
Individual Differences
159(3)
Fixed versus Random Factors in the General Linear Model
162(2)
A Fixed Effects Group Analysis
164(6)
A Random Effects Group Analysis
170(5)
Comparing Fixed and Random Effects Analyses
175(1)
Multiple Factor Experiments
176(2)
Power Analysis
178(7)
8 Coherence Analysis
185(36)
Autocorrelation and Cross-Correlation
186(7)
Power Spectrum and Cross-Power Spectrum
193(4)
Coherence
197(12)
Partial Coherence
209(2)
Using the Phase Spectrum to Determine Causality
211(8)
Conclusions
219(2)
9 Granger Causality
221(24)
Quantitative Measures of Causality
226(5)
Parameter Estimation
231(3)
Inference
234(1)
Conditional Granger Causality
235(7)
Comparing Granger Causality to Coherence Analysis
242(3)
10 Principal Components Analysis
245(12)
Principal Components Analysis
246(2)
PCA with fMRI Data
248(3)
Using PCA to Eliminate Noise
251(5)
Conclusions
256(1)
11 Independent Component Analysis
257(34)
The Cocktail-Party Problem
257(1)
Applying ICA to fMRI Data
258(8)
Spatial ICA
260(1)
Assessing Statistical Independence
261(2)
The Importance of Non-normality in ICA
263(1)
Preparing Data for ICA
263(3)
ICA Algorithms
266(11)
Minimizing Mutual Information
266(1)
Mathematical Definitions
267(1)
Conceptual Treatment
268(1)
Methods That Maximize Non-normality
269(2)
Maximum Likelihood Approaches
271(1)
Infomax
272(1)
Overview
272(2)
The Infomax Learning Algorithm
274(3)
Interpreting ICA Results
277(4)
Determining the Relative Importance of Each Component
278(1)
Assigning Meaning to Components
279(2)
The Noisy ICA Model
281(4)
Other Issues
285(2)
Comparing ICA and GLM Approaches
287(2)
Conclusions
289(2)
12 Other Methods
291(6)
Pattern Classification Techniques
291(1)
Partial Least Squares
292(1)
Dynamic Causal Modeling
293(1)
Bayesian Approaches
294(3)
Appendix A Matrix Algebra Tutorial
297(18)
Matrices and Their Basic Operations
297(7)
Rank
304(2)
Solving Linear Equations
306(4)
Eigenvalues and Eigenvectors
310(5)
Definitions
310(3)
Properties
313(2)
Appendix B Multivariate Probability Distributions
315(6)
Multivariate Normal Distributions
316(5)
References 321(8)
Index 329