About the Author |
|
ix | |
About the Technical Reviewer |
|
xi | |
Acknowledgments |
|
xiii | |
|
|
1 | (18) |
|
|
1 | (4) |
|
|
2 | (1) |
|
|
2 | (1) |
|
|
3 | (1) |
|
|
4 | (1) |
|
|
4 | (1) |
|
|
5 | (1) |
|
|
5 | (12) |
|
|
5 | (2) |
|
|
7 | (1) |
|
|
7 | (3) |
|
|
10 | (4) |
|
|
14 | (3) |
|
|
17 | (2) |
|
Chapter 2 Introduction to Probability and Random Variables |
|
|
19 | (20) |
|
|
19 | (15) |
|
|
21 | (1) |
|
|
22 | (1) |
|
The General Addition Rule |
|
|
23 | (4) |
|
Conditional Probabilities |
|
|
27 | (4) |
|
|
31 | (1) |
|
|
31 | (3) |
|
|
34 | (3) |
|
Discrete vs. Continuous Random Variables |
|
|
35 | (2) |
|
|
37 | (2) |
|
|
39 | (32) |
|
|
39 | (2) |
|
|
41 | (14) |
|
Bernoulli Distribution and Trials |
|
|
41 | (2) |
|
|
43 | (6) |
|
|
49 | (4) |
|
Distributions Application |
|
|
53 | (2) |
|
|
55 | (14) |
|
Differences from Discrete Distributions |
|
|
55 | (4) |
|
|
59 | (3) |
|
|
62 | (5) |
|
|
67 | (1) |
|
Variance and Standard Deviation |
|
|
68 | (1) |
|
|
69 | (2) |
|
Chapter 4 Predicting House Sale Prices with Linear Regression |
|
|
71 | (38) |
|
|
71 | (36) |
|
|
73 | (2) |
|
|
75 | (1) |
|
|
76 | (3) |
|
Finding an Optimal Solution |
|
|
79 | (2) |
|
Implementing Simple Linear Regression |
|
|
81 | (5) |
|
Multiple Linear Regression |
|
|
86 | (1) |
|
Deriving Linear Regression with Vectors |
|
|
87 | (4) |
|
Implementing Multiple Linear Regression |
|
|
91 | (16) |
|
Predicting House Sale Prices |
|
|
107 | (1) |
|
|
107 | (2) |
|
Chapter 5 Hypothesis Testing |
|
|
109 | (26) |
|
What Is Hypothesis Testing? |
|
|
109 | (1) |
|
|
110 | (4) |
|
|
111 | (1) |
|
The Alternative Hypothesis |
|
|
111 | (1) |
|
|
112 | (2) |
|
Distribution of Sample Means |
|
|
114 | (9) |
|
The Central Limit Theorem |
|
|
117 | (6) |
|
|
123 | (6) |
|
Determining Confidence Levels |
|
|
123 | (1) |
|
|
124 | (1) |
|
|
124 | (2) |
|
|
126 | (3) |
|
|
129 | (5) |
|
Computing a Standard Score |
|
|
130 | (2) |
|
Computing Confidence Intervals |
|
|
132 | (2) |
|
A Word on Chi-Squared Tests |
|
|
134 | (1) |
|
|
134 | (1) |
|
Chapter 6 Statistical Methods for Data Compression |
|
|
135 | (32) |
|
An Introduction to Compression |
|
|
135 | (6) |
|
|
136 | (3) |
|
Lossless vs. Lossy Compression |
|
|
139 | (2) |
|
|
141 | (4) |
|
|
144 | (1) |
|
Implementing a Compression Algorithm |
|
|
145 | (20) |
|
|
145 | (13) |
|
|
158 | (7) |
|
|
165 | (2) |
|
Chapter 7 Statistical Methods in Recommender Systems |
|
|
167 | (32) |
|
|
167 | (2) |
|
The Functions of Recommender Systems |
|
|
168 | (1) |
|
|
169 | (4) |
|
|
169 | (1) |
|
|
170 | (1) |
|
|
171 | (2) |
|
|
173 | (5) |
|
|
173 | (3) |
|
Euclidean Squared Distance |
|
|
176 | (2) |
|
|
178 | (7) |
|
|
179 | (4) |
|
|
183 | (2) |
|
Implementing the Algorithm |
|
|
185 | (13) |
|
|
186 | (12) |
|
|
198 | (1) |
|
|
199 | (12) |
|
The Swift Programming Language |
|
|
199 | (2) |
|
|
201 | (1) |
|
|
202 | (1) |
|
|
203 | (1) |
|
|
204 | (1) |
|
Statistical Methods for Data Compression |
|
|
205 | (2) |
|
Statistical Methods in Recommender Systems |
|
|
207 | (1) |
|
Professional Areas of Application |
|
|
208 | (1) |
|
|
208 | (1) |
|
Machine Learning Engineer |
|
|
208 | (1) |
|
|
208 | (1) |
|
|
209 | (1) |
|
Topics for Further Studies |
|
|
209 | (2) |
|
|
209 | (1) |
|
|
210 | (1) |
|
Supervised Machine Learning |
|
|
210 | (1) |
Index |
|
211 | |