Atjaunināt sīkdatņu piekrišanu

E-grāmata: Statistical Atlases and Computational Models of the Heart. Multi-Disease, Multi-View, and Multi-Center Right Ventricular Segmentation in Cardiac MRI Challenge: 12th International Workshop, STACOM 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Revised Selected Papers

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 13131
  • Izdošanas datums: 14-Jan-2022
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030937225
  • Formāts - EPUB+DRM
  • Cena: 77,31 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 13131
  • Izdošanas datums: 14-Jan-2022
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030937225

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book constitutes the proceedings of the 12th International Workshop on Statistical Atlases and Computational Models of the Heart, STACOM 2021, as well as the M&Ms-2 Challenge: Multi-Disease, Multi-View and Multi-Center Right Ventricular Segmentation in Cardiac MRI Challenge.The 25 regular workshop papers included in this volume were carefully reviewed and selected after being revised. They deal with cardiac imaging and image processing, machine learning applied to cardiac imaging and image analysis, atlas construction, artificial intelligence, statistical modelling of cardiac function across different patient populations, cardiac computational physiology, model customization, atlas based functional analysis, ontological schemata for data and results, integrated functional and structural analyses, as well as the pre-clinical and clinical applicability of these methods.





In addition, 15 papers from the M&MS-2 challenge are included in this volume. The Multi-Disease, Multi-View & Multi-Center Right Ventricular Segmentation in Cardiac MRI Challenge (M&Ms-2) is focusing on the development of generalizable deep learning models for the Right Ventricle that can maintain good segmentation accuracy on different centers, pathologies and cardiac MRI views. There was a total of 48 submissions to the workshop.
Multi-atlas segmentation of the aorta from 4D flow MRI: comparison of
several fusion strategie.- Quality-aware Cine Cardiac MRI Reconstruction and
Analysis from Undersampled k-space Data.- Coronary Artery Centerline
Refinement using GCN Trained with Synthetic Data.- Novel imaging biomarkers
to evaluate heart dysfunction post-chemotherapy: a preclinical MRI
feasibility study.- A bi-atrial statistical shape model as a basis to
classify left atrial enlargement from simulated and clinical 12-lead ECGs.-
Vessel Extraction and Analysis of Aortic Dissection.- The Impact of Domain
Shift on Left and Right Ventricle Segmentation in Short Axis Cardiac MR
Images.- Characterizing myocardial ischemia and reperfusion patterns with
hierarchical manifold learning.- Generating Subpopulation-Specific
Biventricular Anatomy Models Using Conditional Point Cloud Variational
Autoencoders.- Improved AI-based Segmentation of Apical and Basal Slices from
Clinical Cine CMR.- Mesh Convolutional Neural Networks forWall Shear Stress
Estimation in 3D Artery Models.- Hierarchical multi-modality prediction model
to assess obesity-related remodelling.- Neural Angular Plaque
Characterization:Automated Quantification of Polar Distributionfor Plaque
Composition.- Simultaneous Segmentation and Motion Estimation of Left
Ventricular Myocardium in 3D Echocardiography using Multi-task Learning.-
Statistical shape analysis of the tricuspid valve in hypoplastic left heart
syndrome.- An Unsupervised 3D Recurrent Neural Networkfor Slice Misalignment
Correction in CardiacMR Imaging.- Unsupervised Multi-Modality
RegistrationNetwork based on Spatially Encoded Gradient Information.-
In-silico analysis of device-related thrombosis for different left atrial
appendage occluder settings.- Valve flattening with functional biomarkers for
the assessment of mitral valve repair.- Multi-modality cardiac segmentation
via mixing domains for unsupervised adaptation.- Uncertainty-Aware Training
for Cardiac Resynchronisation Therapy Response Prediction.- Cross-domain
Artefact Correction of Cardiac MRI.- Detection and Classification of Coronary
Artery Plaques in Coronary Computed Tomography Angiography Using 3D CNN.-
Predicting 3D Cardiac Deformations With Point Cloud Autoencoders.- Inuence
of morphometric and mechanical factors in thoracic aorta nite element
modeling.- Right Ventricle Segmentation via Registration and Multi-input
Modalities in Cardiac Magnetic Resonance Imaging from Multi-Disease,
Multi-View and Multi-Center.- Using MRI-specific Data Augmentation to Enhance
the Segmentation of Right Ventricle in Multi-disease, Multi-center and
Multi-view  Cardiac MRI.- Right Ventricular Segmentation from Short- and
Long-Axis MRIs via Information Transition.- Tempera: Spatial Transformer
Feature Pyramid Network for Cardiac MRI Segmentation.- Multi-view SA-LA Net:
A framework for simultaneous segmentation of RV on multi-view cardiac MR
Images.- Right ventricular segmentation in multi-view cardiac MRI using a
unified U-net model.- Deformable Bayesian Convolutional Networks for
Disease-Robust Cardiac MRI Segmentation.- Consistency based Co-Segmentation
for Multi-View Cardiac MRI using Vision Transformer.- Refined Deep Layer
Aggregation for Multi-Disease, Multi-View & Multi-Center Cardiac MR
Segmentation.- A Multi-View Cross-Over Attention U-Net Cascade With Fourier
Domain Adaptation For Multi-Domain Cardiac MRI Segmentation.- Multi-Disease,
Multi-View & Multi-Center Right Ventricular Segmentation in Cardiac MRI using
Efficient Late-Ensemble Deep Learning Approach.- Automated Segmentation of
the Right Ventricle from Magnetic Resonance Imaging Using Deep Convolutional
Neural Networks.- 3D right ventricle reconstruction from 2D U-Net
segmentation of sparse short-axis and 4-chamber cardiac cine MRI views.- Late
Fusion U-Net with GAN-based Augmentation for Generalizable Cardiac MRI
Segmentation.- Using Out-of-Distribution Detection for Model Refinement in
Cardiac Image Segmentation.