Atjaunināt sīkdatņu piekrišanu

E-grāmata: Statistical Challenges in Assessing and Fostering the Reproducibility of Scientific Results: Summary of a Workshop

  • Formāts: 132 pages
  • Izdošanas datums: 29-Feb-2016
  • Izdevniecība: National Academies Press
  • Valoda: eng
  • ISBN-13: 9780309392051
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 42,57 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 132 pages
  • Izdošanas datums: 29-Feb-2016
  • Izdevniecība: National Academies Press
  • Valoda: eng
  • ISBN-13: 9780309392051
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Questions about the reproducibility of scientific research have been raised in numerous settings and have gained visibility through several high-profile journal and popular press articles. Quantitative issues contributing to reproducibility challenges have been considered (including improper data measurement and analysis, inadequate statistical expertise, and incomplete data, among others), but there is no clear consensus on how best to approach or to minimize these problems.





A lack of reproducibility of scientific results has created some distrust in scientific findings among the general public, scientists, funding agencies, and industries. While studies fail for a variety of reasons, many factors contribute to the lack of perfect reproducibility, including insufficient training in experimental design, misaligned incentives for publication and the implications for university tenure, intentional manipulation, poor data management and analysis, and inadequate instances of statistical inference.





The workshop summarized in this report was designed not to address the social and experimental challenges but instead to focus on the latter issues of improper data management and analysis, inadequate statistical expertise, incomplete data, and difficulties applying sound statistic inference to the available data. Many efforts have emerged over recent years to draw attention to and improve reproducibility of scientific work. This report uniquely focuses on the statistical perspective of three issues: the extent of reproducibility, the causes of reproducibility failures, and the potential remedies for these failures.



Table of Contents



Front Matter 1 Introduction 2 Overview and Case Studies 3 Conceptualizing, Measuring, and Studying Reproducibility 4 The Way Forward: Using Statistics to Improve Reproducibility References Appendixes Appendix A: Registered Workshop Participants Appendix B: Workshop Agenda Appendix C: Acronyms
1 Introduction
1(7)
Workshop Overview 2(5)
Workshop Themes, 3 Organization of this Report 7(1)
2 Overview and Case Studies
8(27)
Opening Remarks from the Workshop Co-Chairs
9(1)
Perspectives from Stakeholders
9(9)
Overview of the Statistical Challenges of Reproducibility
18(4)
Case Studies
22(13)
3 Conceptualizing, Measuring, and Studying Reproducibility
35(33)
Definitions and Measures of Reproducibility
36(12)
Reproducibility and Statistical Significance
48(7)
Assessment of Factors Affecting Reproducibility
55(6)
Reproducibility from the Informatics Perspective
61(7)
4 The Way Forward: Using Statistics to Improve Reproducibility
68(29)
Open Problems, Needs, and Opportunities for Methodologic Research
69(9)
Reporting Scientific Results and Sharing Scientific Study Data
78(11)
The Way Forward from the Data Sciences Perspective: Research
89(8)
REFERENCES
97(12)
APPENDIXES
A Registered Workshop Participants
109(6)
B Workshop Agenda
115(3)
C Acronyms
118