Atjaunināt sīkdatņu piekrišanu

E-grāmata: Statistical Mechanics of Liquids and Solutions: Intermolecular Forces, Structure and Surface Interactions

(University of Gothenburg, Sweden)
  • Formāts: 544 pages
  • Izdošanas datums: 30-Jul-2019
  • Izdevniecība: CRC Press Inc
  • ISBN-13: 9781482244021
  • Formāts - PDF+DRM
  • Cena: 57,60 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 544 pages
  • Izdošanas datums: 30-Jul-2019
  • Izdevniecība: CRC Press Inc
  • ISBN-13: 9781482244021

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The statistical mechanical theory of liquids and solutions is a fundamental area of physical sciences with important implications in other fields of science and for many industrial applications. This book introduces equilibrium statistical mechanics in general, and statistical mechanics of liquids and solutions in particular. A major theme is the intimate relationship between forces in a fluid and the fluid structure a relationship that is paramount for the understanding of the subject of interactions in dense fluids. Using this microscopic, molecular approach, the text emphasizes clarity of physical explanations for phenomena and mechanisms relevant to fluids, addressing the structure and behavior of liquids and solutions under various conditions. A notable feature is the authors treatment of forces between particles that include nanoparticles, macroparticles, and surfaces. The book provides an expanded, in-depth treatment of simple liquids and electrolytes in the bulk and in confinement.











Provides an introduction to statistical mechanics of liquids and solutions with special attention to structure and interactions.





Offers an extensive presentation starting with the basics of statistical mechanics to modern aspects of the theory of liquids and solutions, including intermolecular interactions in fluids.





Treats both homogeneous bulk fluids and inhomogeneous fluids near surfaces and in confinement.





Takes a microscopic, molecular approach that combines physical transparency, theoretical sharpness and a pedagogical and accessible style.





Gives explicit and clear textual explanations and physical interpretations for any mathematical relationships and derivations.





Goes deeper than the available texts on interactions in fluids, by taking the discussion beyond simple approximations and mean field approaches.

The book will be an invaluable resource for advanced undergraduate, graduate, and postgraduate students in physics, chemistry, soft matter science, surface and colloid science and related fields, as well as professionals and instructors in those areas of science.
Preface xi
Author xix
Part I Basis of Equilibrium Statistical Mechanics
Chapter 1 Introduction
3(30)
1.1 The Microscopic Definitions of Entropy and Temperature
3(14)
1.1.1 A Simple Illustrative Example
5(7)
1.1.2 Microscopic Definition of Entropy and Temperature for Isolated Systems
12(5)
1.2 Quantum vs Classical Mechanical Formulations of Statistical Mechanics: An Example
17(14)
1.2.1 The Monatomic Ideal Gas: Quantum Treatment
18(9)
1.2.2 The Monatomic Ideal Gas: Classical Treatment
27(4)
Appendix 1A: Alternative Expressions for the Entropy of an Isolated System
31(2)
Chapter 2 Statistical Mechanics from a Quantum Perspective
33(76)
2.1 Postulates and Some Basic Definitions
33(5)
2.2 Isolated Systems: The Microcanonical Ensemble
38(14)
2.3 Thermal Equilibria and the Canonical Ensemble
52(14)
2.3.1 The Canonical Ensemble and Boltzmann's Distribution Law
52(4)
2.3.2 Calculations of Thermodynamical Quantities; the Connection with Partition Functions
56(10)
2.3.2.1 The Helmholtz Free Energy
56(3)
2.3.2.2 Thermodynamical Quantities as Averages
59(4)
2.3.2.3 Entropy in the Canonical Ensemble
63(3)
2.4 Constant Pressure: The Isobaric-Isothermal Ensemble
66(13)
2.4.1 Probabilities and the Isobaric-Isothermal Partition Function
66(5)
2.4.2 Thermodynamical Quantities in the Isobaric-Isothermal Ensemble
71(8)
2.4.2.1 The Gibbs Free Energy
71(2)
2.4.2.2 Probabilities and Thermodynamical Quantities
73(3)
2.4.2.3 The Entropy in the Isobaric-Isothermal Ensemble
76(3)
2.5 Open Systems: Chemical Potential and the Grand Canonical Ensemble
79(9)
2.5.1 Probabilities and the Grand Canonical Partition Function
79(4)
2.5.2 Thermodynamical Quantities in the Grand Canonical Ensemble
83(5)
2.6 Fluctuations in Thermodynamical Variables
88(3)
2.6.1 Fluctuations in Energy in the Canonical Ensemble
88(1)
2.6.2 Fluctuations in Number of Particles in the Grand Canonical Ensemble
89(1)
2.6.3 Fluctuations in the Isobaric-Isothermal Ensemble
90(1)
2.7 Independent Subsystems
91(8)
2.7.1 The Ideal Gas and Single-Particle Partition Functions
91(4)
2.7.2 Translational Single-Particle Partition Function
95(4)
Appendix 2A: The Volume Dependence of S and Quasistatic Work
99(4)
Appendix 2B: Stricter Derivations of Probability Expressions
103(6)
Chapter 3 Classical Statistical Mechanics
109(22)
3.1 Systems with N Spherical Particles
110(2)
3.2 The Canonical Ensemble
112(10)
3.3 The Grand Canonical Ensemble
122(3)
3.4 Real Gases
125(6)
Chapter 4 Illustrative Examples from Some Classical Theories of Fluids
131(34)
4.1 The Ising Model
131(3)
4.2 The Ising Model Applied to Lattice Gases and Binary Liquid Mixtures
134(31)
4.2.1 Ideal Lattice Gas
135(1)
4.2.2 Ideal Liquid Mixture
136(2)
4.2.3 The Bragg-William Approximation
138(46)
4.2.3.1 Regular Solution Theory
138(4)
4.2.3.2 Some Applications of Regular Solution Theory
142(9)
4.2.3.3 Flory-Huggins Theory for Polymer Solutions
151(14)
Part II Fluid Structure and Interparticle Interactions
Chapter 5 Interaction Potentials and Distribution Functions
165(92)
5.1 Bulk Fluids of Spherical Particles. The Radial Distribution Function
166(6)
5.2 Number Density Distributions: Density Profiles
172(3)
5.3 Force Balance and the Boltzmann Distribution for Density: Potential of Mean Force
175(6)
5.4 The Relationship to Free Energy and Chemical Potential
181(3)
5.5 Distribution Functions of Various Orders for Spherical Particles
184(8)
5.5.1 Singlet Distribution Function
184(1)
5.5.2 Pair Distribution Function
185(3)
5.5.3 Distribution Functions in the Canonical Ensemble
188(4)
5.6 The structure factor for homogeneous and inhomogeneous fluids
192(7)
5.7 Thermodynamical Quantities from Distribution Functions
199(13)
5.8 Microscopic density distributions and density-density correlations
212(3)
5.9 Distribution Function Hierarchies and Closures, Preliminaries
215(3)
5.10 Distribution Functions in the Grand Canonical Ensemble
218(4)
5.11 The Born-Green-Yvon Equations
222(3)
5.12 Mean Field Approximations for Bulk Systems
225(2)
5.13 Computer Simulations and Distribution Functions
227(28)
5.13.1 General Background
227(8)
5.13.1.1 Basics of Molecular Dynamics Simulations
228(3)
5.13.1.2 Basics of Monte Carlo Simulations
231(4)
5.13.2 Bulk Fluids
235(15)
5.13.2.1 Boundary Conditions
235(2)
5.13.2.2 Distribution Functions
237(5)
5.13.2.3 Thermodynamical Quantities
242(8)
5.13.3 Inhomogeneous Fluids
250(8)
5.13.3.1 Density Profiles Outside Macroparticles or Near Planar Surfaces
250(2)
5.13.3.2 Pair Distribution Functions
252(3)
Appendix 5A: The Dirac Delta Function
255(2)
Chapter 6 Interactions and Correlations in Simple Bulk Electrolytes
257(96)
6.1 The Poisson-Boltzmann (PB) Approximation
258(46)
6.1.1 Bulk Electrolytes, Basic Treatment
258(17)
6.1.2 Decay of Electrostatic Potential and Effective Charges of Particles
275(15)
6.1.2.1 The Concept of Effective Charge
275(3)
6.1.2.2 Electrostatic Potential from Nonspherical Particles
278(5)
6.1.2.3 The Decay of Electrostatic Potential from Spherical and Nonspherical Particles
283(7)
6.1.3 Interaction between two Particles Treated on an Equal Basis
290(4)
6.1.3.1 Background
290(1)
6.1.3.2 The Decay of Interaction between Two Nonspherical Macroions
291(3)
6.1.4 The Interaction between Two Macroions for all Separations
294(5)
6.1.4.1 Poisson-Boltzmann Treatment
294(3)
6.1.4.2 Electrostatic Part of Pair Potential of Mean Force, General Treatment
297(2)
6.1.5 One Step beyond PB: What Happens When all Ions are Treated on an Equal Basis?
299(5)
6.2 Electrostatic Screening in Simple Bulk Electrolytes, General Case
304(41)
6.2.1 Electrostatic Interaction Potentials
306(12)
6.2.1.1 Polarization Response and Nonlocal Electrostatics
307(4)
6.2.1.2 The Potential of Mean Force and Dressed Particles
311(2)
6.2.1.3 Screened Electrostatic Interactions
313(5)
6.2.2 The Decay Behavior and the Screening Decay Length
318(21)
6.2.2.1 Oscillatory and Monotonic Exponential Decays: Explicit Examples
318(2)
6.2.2.2 Roles of Effective Charges, Effective Dielectric Permittivities and the Decay Parameter K
320(10)
6.2.2.3 The Significance of the Asymptotic Decays: Concrete Examples
330(9)
6.2.3 Density-Density, Charge-Density and Charge-Charge Correlations
339(6)
Appendix 6A: The Orientational Variable ω
345(1)
Appendix 6B: Variations in Density Distribution When the External Potential is Varied; the First Yvon Equation
346(3)
Appendix 6C: Definitions of the HNN, HQN and HQQ Correlation Functions
349(4)
Chapter 7 Inhomogeneous and Confined Simple Fluids
353(68)
7.1 Electric Double-Layer Systems
354(38)
7.1.1 The Poisson-Boltzmann (Gouy-Chapman) Theory
355(11)
7.1.1.1 The Poisson-Boltzmann Equation for Planar Double Layers
355(3)
7.1.1.2 The Case of Symmetric Electrolytes
358(4)
7.1.1.3 Effective Surface Charge Densities and the Decay of the Electrostatic Potential
362(4)
7.1.2 Electrostatic Screening in Electric Double-Layers, General Case
366(6)
7.1.2.1 Decay of the Electrostatic Potential Outside a Wall
367(2)
7.1.2.2 Decay of Double-Layer Interactions: Macroion-Wall and Wall-Wall
369(3)
7.1.3 Ion-Ion Correlation Effects in Electric Double-Layers: Explicit Examples
372(7)
7.1.4 Electric Double-Layers with Surface Polarizations (Image Charge Interactions)
379(6)
7.1.5 Electric Double-Layers with Dispersion Interactions
385(7)
7.2 Structure of Inhomogeneous Fluids on the Pair Distribution Level
392(23)
7.2.1 Inhomogeneous Simple Fluids
393(13)
7.2.1.1 Lennard-Jones Fluids
393(3)
7.2.1.2 Hard Sphere Fluids
396(10)
7.2.2 Primitive Model Electrolytes
406(15)
7.2.2.1 Pair Distributions in the Electric Double-Layer
406(4)
7.2.2.2 Ion-Ion Correlations Forces: Influences on Density Profiles
410(5)
Appendix 7A: Solution of PB Equation for a Surface in Contact with a Symmetric Electrolyte
415(1)
Appendix 7B: Electric Double-Layers with Ion-Wall Dispersion Interactions in Linearized PB Approximation
416(5)
Chapter 8 Surface Forces
421(58)
8.1 General Considerations
421(6)
8.1.1 The Disjoining Pressure and the Free Energy of Interaction
422(2)
8.1.2 Electric Double-Layer Interactions, Some General Matters
424(3)
8.2 Poisson-Boltzmann Treatment of Electric Double-Layer Interactions
427(13)
8.2.1 Equally Charged Surfaces
428(7)
8.2.2 Arbitrarily Charged Surfaces
435(4)
8.2.3 Electrostatic part of double-layer interactions, general treatment
439(1)
8.3 Surface Forces and Pair Correlations, General Considerations
440(7)
8.4 Structural Surface Forces
447(4)
8.5 Electric Double-Layer Interactions with lon-lon Correlations
451(9)
8.5.1 Counterions between Charged Surfaces
451(8)
8.5.2 Equilibrium with Bulk Electrolyte
459(1)
8.6 Van der Waals Forces and Image Interactions in Electric Double-Layer Systems
460(12)
8.6.1 Van der Waals Interactions and Mean Field Electrostatics: The DLVO Theory
461(2)
8.6.2 The Effects of Ion-Ion Correlations on Van der Waals Interactions. Ionic Image Charge Interactions
463(4)
8.6.3 The Inclusion of Dispersion Interactions for the Ions
467(5)
Appendix 8A: Solution of PB Equation for Counterions between Two Surfaces
472(2)
Appendix 8B: Proofs of Two Expressions for Pslit
474(5)
List of Symbols, 479(8)
Index, 487
Roland Kjellander acquired a masters degree in chemical engineering, a Ph.D. in physical chemistry, and the title of docent in physical chemistry from the Royal Institute of Technology, Stockholm, Sweden. He is currently a professor emeritus of physical chemistry in the Department of Chemistry and Molecular Biology at the University of Gothenburg, Sweden. His previous appointments include roles in various academic and research capacities at the University of Gothenburg, Sweden; Australian National University, Canberra; Royal Institute of Technology, Stockholm, Sweden; Massachusetts Institute of Technology, Cambridge, USA; and Harvard Medical School, Boston, USA. He was awarded the 2004 Pedagogical Prize from the University of Gothenburg, Sweden, and the 2007 Norblad-Ekstrand Medal from the Swedish Chemical Society. Professor Kjellanders field of research is statistical mechanics, in particular liquid state theory.