Atjaunināt sīkdatņu piekrišanu

Statistical Mechanics of Nonequilibrium Processes, v. 2, Relaxation and Hydrodynamic Processes [Hardback]

Volume editor , Volume editor
  • Formāts: Hardback, 376 pages, height x width: 245x174 mm, weight: 910 g
  • Izdošanas datums: 24-Sep-1997
  • Izdevniecība: Wiley-VCH Verlag GmbH
  • ISBN-10: 3055017099
  • ISBN-13: 9783055017094
Citas grāmatas par šo tēmu:
Statistical Mechanics of Nonequilibrium Processes, v. 2, Relaxation and Hydrodynamic Processes
  • Formāts: Hardback, 376 pages, height x width: 245x174 mm, weight: 910 g
  • Izdošanas datums: 24-Sep-1997
  • Izdevniecība: Wiley-VCH Verlag GmbH
  • ISBN-10: 3055017099
  • ISBN-13: 9783055017094
Citas grāmatas par šo tēmu:
The second part of a two-volume textbook on the modern statistical theory of nonequilibrium processes. The general method of nonequilibrium statistical ensembles developed in the first volume is applied to different problems in transport theory, relaxation phenomena, hydrodynamics, and the dynamical theory of fluctuations. Exercises and problems for readers are also included.The book is aimed at students who ha ve undergone the standard course in statistical physics. and night also be of interest for specialists working in solid state physics, chemical physics, and physics of plasma and fluids.
Introduction 9(12)
Frequently used formulae 18(2)
Errata to Volume 1 20(1)
5 Linear irreversible processes
21(84)
5.1 Linear response to mechanical perturbations
22(23)
5.1.1 General formalism
22(6)
5.1.2 Equilibrium correlation functions and retarded Green's functions
28(4)
5.1.3 The response to stationary perturbations
32(1)
5.1.4 Kubo's approach to linear response theory
33(3)
5.1.5 Isolated and isothermal susceptibility
36(4)
5.1.6 Magnetic susceptibility
40(2)
5.1.7 Electrical conductivity
42(3)
5.2 Properties of susceptibilities and kinetic coefficients
45(14)
5.2.1 The spectral density
46(1)
5.2.2 Symmetry relations
47(5)
5.2.3 Onsager's reciprocity relations
52(2)
5.2.4 Dispersion relations
54(1)
5.2.5 Sum rules
55(2)
5.2.6 Fluctuation-dissipation theorems
57(2)
5.3 The memory function formalism
59(16)
5.3.1 Linear evolution equations for observables
60(5)
5.3.2 Macroscopic dynamics of magnetic systems
65(3)
5.3.3 Connection between memory functions and correlation functions
68(3)
5.3.4 Relaxation time and the "plateau problem"
71(4)
5.4 Linear transport processes
75(10)
5.4.1 Linear kinetic equations
75(4)
5.4.2 Linear hydrodynamic equations
79(3)
5.4.3 Diffusion equation
82(3)
Appendices to
Chapter 5
85(17)
5A Variational principle in linear response theory
85(5)
5B Isothermal and adiabatic electrical conductivity
90(5)
5C Linear response to thermal perturbations: thermoelectric transport coefficients
95(5)
5D Mori's representation of correlation functions
100(2)
Problems to
Chapter 5
102(3)
6 Nonequilibrium correlations and Green's functions
105(68)
6.1 Nonequilibrium thermodynamic correlations
106(19)
6.1.1 Perturbation expansion of nonequilibrium equations of state
107(3)
6.1.2 Nonequilibrium thermodynamic Green's functions
110(4)
6.1.3 Perturbation expansion of thermodynamic Green's functions
114(2)
6.1.4 Thermodynamic Green's functions for Fermi and Bose systems
116(2)
6.1.5 Nonequilibrium correlations in an electron gas
118(7)
6.2 Correlations in quasi-equilibrium states
125(13)
6.2.1 Thermodynamic Green's functions in quasi-equilibrium
126(3)
6.2.2 Generalized susceptibility in the Green's function formalism
129(1)
6.2.3 The dielectric function for a charged particle system
130(3)
6.2.4 Kinetic coefficients in the Green's function formalism
133(2)
6.2.5 The electrical conductivity of high-temperature plasmas
135(3)
6.3 Nonequilibrium real-time Green's functions
138(25)
6.3.1 The definition of real-time Green's functions
138(2)
6.3.2 Equations of motion and the Dyson equation
140(4)
6.3.3 The generalized kinetic equation
144(3)
6.3.4 The quasiparticle approximation
147(7)
6.3.5 Boundary conditions for the real-time Green's functions
154(2)
6.3.6 Inclusion of thermodynamic correlations
156(7)
Appendices to
Chapter 5
163(5)
6A Evaluation of sums over discrete frequencies
163(1)
6B Approximate dielectric function
164(3)
6C The gradient expansion in the generalized kinetic equation
167(1)
Problems to
Chapter 6
168(5)
7 Nonlinear relaxation processes
173(64)
7.1 Weakly interacting subsystems
173(16)
7.1.1 Energy exchange between two subsystems
174(4)
7.1.2 The kinetic coefficient for energy exchange
178(3)
7.1.3 Particle and energy exchange between subsystems
181(3)
7.1.4 Hot-electron transport in semiconductors
184(5)
7.2 Master equations
189(14)
7.2.1 The generalized master equation
190(3)
7.2.2 Perturbation expansion of the master equation
193(2)
7.2.3 Master equation for the electron-impurity system
195(5)
7.2.4 Master equation for classical fluids
200(3)
7.3 Relaxation processes in open systems
203(10)
7.3.1 The master equation for a system in a heat bath
203(3)
7.3.2 The master equation in the Born approximation
206(1)
7.3.3 Example: a quantum oscillator in a heat bath
207(3)
7.3.4 The quantum Fokker-Planck equation
210(3)
7.4 Kinetic processes in lasers
213(10)
7.4.1 A single-mode laser with two-level active atoms
213(3)
7.4.2 The master equation for the field-atom subsystem
216(3)
7.4.3 The pump parameter
219(2)
7.4.4 Atomic correlations in a laser
221(2)
Appendices to
Chapter 7
223(11)
7A The entropy production operator for hot-electron transport
223(2)
7B The coherent-state representation
225(2)
7C Quantum operators in the coherent-state representation
227(7)
Problems to
Chapter 7
234(3)
8 Hydrodynamic processes
237(63)
8.1 A general theory of hydrodynamic processes
237(5)
8.1.1 Local conservation laws
237(1)
8.1.2 Generalized hydrodynamic equations
238(2)
8.1.3 Markovian and local approximations
240(2)
8.2 Transport processes in a one-component fluid
242(17)
8.2.1 Local conservation laws
242(3)
8.2.2 The ideal fluid hydrodynamics
245(4)
8.2.3 The local kinetic coefficients
249(4)
8.2.4 Transport coefficients
253(3)
8.2.5 Dissipative processes in a one-component fluid
256(3)
8.3 A multicomponent fluid
259(10)
8.3.1 Local equilibrium in a multicomponent fluid
259(2)
8.3.2 Transport equations
261(5)
8.3.3 Transport processes in a binary mixture
266(3)
8.4 Superfluid hydrodynamics
269(22)
8.4.1 The equilibrium state of a Bose superfluid
269(4)
8.4.2 The local-equilibrium distribution for a superfluid
273(2)
8.4.3 Local thermodynamic relations for a superfluid
275(4)
8.4.4 Hydrodynamic equations for an ideal superfluid
279(5)
8.4.5 Dissipative processes in superfluid hydrodynamics
284(7)
Appendices to
Chapter 8
291(7)
8A Local thermodynamic relations for classical fluids
291(2)
8B Transformation of phase variables in hydrodynamics
293(3)
8C The entropy production operator for a superfluid
296(2)
Problems to
Chapter 8
298(2)
9 Hydrodynamic fluctuations
300(63)
9.1 Time evolution of large-scale fluctuations
300(16)
9.1.1 Distribution function of hydrodynamic variables
301(2)
9.1.2 The generalized Fokker-Planck equation
303(4)
9.1.3 The gradient expansion in the Fokker-Planck equation
307(3)
9.1.4 Functional form of the Fokker-Planck equation
310(3)
9.1.5 The entropy functional for hydrodynamic fluctuations
313(3)
9.2 Fluctuations in a one-component fluid
316(10)
9.2.1 Thermodynamics of fluctuations
316(2)
9.2.2 The drift terms and the bare kinetic coefficients
318(3)
9.2.3 The Langevin formalism in fluctuating hydrodynamics
321(5)
9.3 Hydrodynamic fluctuations in nonequilibrium steady states
326(14)
9.3.1 Time correlations of the nonequilibrium fluctuations
327(3)
9.3.2 The linearized Langevin equations for a simple fluid
330(1)
9.3.3 Density fluctuations in steady states: sound frequencies
331(6)
9.3.4 Density fluctuations in steady states: low frequencies
337(3)
9.4 Statistical mechanics of turbulence
340(14)
9.4.1 Statistical description of turbulent flows in fluids
340(2)
9.4.2 The Fokker-Planck equation for turbulent flows
342(3)
9.4.3 Separation of variables in the Fokker-Planck equation
345(1)
9.4.4 The Reynolds equations
346(2)
9.4.5 The entropy and the free energy of turbulent flow
348(3)
9.4.6 Normal solutions of the Fokker-Planck equation
351(3)
Appendices to
Chapter 9
354(7)
9A The projection operator in fluctuating hydrodynamics
354(2)
9B The equilibrium solution of the Fokker-Planck equation
356(1)
9C Derivation of the Fokker-Planck equation from stochastic hydrodynamic equations
357(4)
Problems to
Chapter 9
361(2)
Conclusion 363(3)
Bibliography 366(7)
Index 373