Atjaunināt sīkdatņu piekrišanu

Statistical Methods in the Atmospheric Sciences 4th edition [Mīkstie vāki]

4.30/5 (32 ratings by Goodreads)
(Department of Earth and Atmospheric Sciences, Cornell University, USA)
  • Formāts: Paperback / softback, 840 pages, height x width: 235x191 mm, weight: 1720 g
  • Izdošanas datums: 11-Jun-2019
  • Izdevniecība: Elsevier Science Publishing Co Inc
  • ISBN-10: 0128158239
  • ISBN-13: 9780128158234
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 130,13 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 840 pages, height x width: 235x191 mm, weight: 1720 g
  • Izdošanas datums: 11-Jun-2019
  • Izdevniecība: Elsevier Science Publishing Co Inc
  • ISBN-10: 0128158239
  • ISBN-13: 9780128158234
Citas grāmatas par šo tēmu:
Statistical Methods in the Atmospheric Sciences, Fourth Edition, continues the tradition of trying to meet the needs of students, researchers and operational practitioners. This updated edition not only includes expanded sections built upon the strengths of the prior edition, but also provides new content where there have been advances in the field, including Bayesian analysis, forecast verification and a new chapter dedicated to ensemble forecasting.Provides a strong, yet concise, introduction to applied statistics that is specific to atmospheric scienceContains revised and expanded sections on nonparametric tests, test multiplicity and quality uncertainty descriptorsIncludes new sections on ANOVA, quantile regression, the lasso and other regularization methods, regression trees, changepoint detection, ensemble forecasting and exponential smoothing

1. Introduction2. Review of Probability3. Empirical Distributions and Exploratory Data Analysis4. Parametric Probability Distributions5. Frequentist Statistical Inference6. Bayesian Inference7. Statistical Forecasting8. Ensemble Forecasting9. Forecast Verification10. Time Series11. Matrix Algebra and Random Matrices12. Multivariate Normal Distribution13. Principal Component (EOF) Analysis14. Linear multivariate analysis of vector pairs: CCA, MCA, and RA15. Discrimination and Classification16. Cluster Analysis

Daniel S. Wilks has been a member of the Atmospheric Sciences faculty at Cornell University since 1987, and is the author of Statistical Methods in the Atmospheric Sciences (2011, Academic Press), which is in its third edition and has been continuously in print since 1995. Research areas include statistical forecasting, forecast postprocessing, and forecast evaluation.