Preface |
|
v | |
|
|
1 | (20) |
|
|
3 | (4) |
|
|
3 | (1) |
|
1.2 Descriptive and Inferential Statistics |
|
|
3 | (1) |
|
1.3 Uncertainty about the Atmosphere |
|
|
4 | (3) |
|
|
7 | (14) |
|
|
7 | (1) |
|
2.2 The Elements of Probability |
|
|
7 | (2) |
|
|
7 | (1) |
|
|
8 | (1) |
|
2.2.3 The Axioms of Probability |
|
|
9 | (1) |
|
2.3 The Meaning of Probability |
|
|
9 | (1) |
|
2.3.1 Frequency Interpretation |
|
|
9 | (1) |
|
2.3.2 Bayesian (Subjective) Interpretation |
|
|
10 | (1) |
|
2.4 Some Properties of Probability |
|
|
10 | (8) |
|
2.4.1 Domain, Subsets, Complements, and Unions |
|
|
11 | (1) |
|
|
12 | (1) |
|
2.4.3 Conditional Probability |
|
|
13 | (1) |
|
|
14 | (2) |
|
2.4.5 Law of Total Probability |
|
|
16 | (1) |
|
|
17 | (1) |
|
|
18 | (3) |
|
Part II Univariate Statistics |
|
|
21 | (436) |
|
3 Empirical Distributions and Exploratory Data Analysis |
|
|
23 | (48) |
|
|
23 | (2) |
|
3.1.1 Robustness and Resistance |
|
|
23 | (1) |
|
|
24 | (1) |
|
3.2 Numerical Summary Measures |
|
|
25 | (3) |
|
|
26 | (1) |
|
|
26 | (1) |
|
|
27 | (1) |
|
3.3 Graphical Summary Devices |
|
|
28 | (14) |
|
3.3.1 Stem-and-Leaf Display |
|
|
28 | (1) |
|
|
29 | (2) |
|
|
31 | (2) |
|
3.3.4 Other Boxplot Variants |
|
|
33 | (1) |
|
|
33 | (1) |
|
3.3.6 Kernel Density Smoothing |
|
|
34 | (5) |
|
3.3.7 Cumulative Frequency Distributions |
|
|
39 | (3) |
|
|
42 | (7) |
|
3.4.1 Power Transformations |
|
|
42 | (4) |
|
3.4.2 Standardized Anomalies |
|
|
46 | (3) |
|
3.5 Exploratory Techniques for Paired Data |
|
|
49 | (11) |
|
|
50 | (1) |
|
3.5.2 Pearson (Ordinary) Correlation |
|
|
50 | (5) |
|
3.5.3 Spearman Rank Correlation and Kendall's τ |
|
|
55 | (2) |
|
|
57 | (2) |
|
3.5.5 Autocorrelation Function |
|
|
59 | (1) |
|
3.6 Exploratory Techniques for Higher-Dimensional Data |
|
|
60 | (10) |
|
|
60 | (1) |
|
3.6.2 The Glyph Scatterplot |
|
|
61 | (2) |
|
3.6.3 The Rotating Scatterplot |
|
|
63 | (1) |
|
3.6.4 The Correlation Matrix |
|
|
63 | (3) |
|
3.6.5 The Scatterplot Matrix |
|
|
66 | (1) |
|
|
67 | (3) |
|
|
70 | (1) |
|
4 Parametric Probability Distributions |
|
|
71 | (62) |
|
|
71 | (2) |
|
4.1.1 Parametric versus Empirical Distributions |
|
|
71 | (1) |
|
4.1.2 What Is a Parametric Distribution? |
|
|
72 | (1) |
|
4.1.3 Parameters versus Statistics |
|
|
72 | (1) |
|
4.1.4 Discrete versus Continuous Distributions |
|
|
72 | (1) |
|
4.2 Discrete Distributions |
|
|
73 | (9) |
|
4.2.1 Binomial Distribution |
|
|
73 | (3) |
|
4.2.2 Geometric Distribution |
|
|
76 | (1) |
|
4.2.3 Negative Binomial Distribution |
|
|
77 | (3) |
|
4.2.4 Poisson Distribution |
|
|
80 | (2) |
|
4.3 Statistical Expectations |
|
|
82 | (3) |
|
4.3.1 Expected Value of a Random Variable |
|
|
82 | (1) |
|
4.3.2 Expected Value of a Function of a Random Variable |
|
|
83 | (2) |
|
4.4 Continuous Distributions |
|
|
85 | (27) |
|
4.4.1 Distribution Functions and Expected Values |
|
|
85 | (2) |
|
4.4.2 Gaussian Distributions |
|
|
87 | (8) |
|
4.4.3 Gamma Distributions |
|
|
95 | (8) |
|
|
103 | (2) |
|
4.4.5 Extreme-Value Distributions |
|
|
105 | (5) |
|
4.4.6 Mixture Distributions |
|
|
110 | (2) |
|
4.5 Qualitative Assessments of the Goodness of Fit |
|
|
112 | (4) |
|
4.5.1 Superposition of a Fitted Parametric Distribution and Data Histogram |
|
|
113 | (2) |
|
4.5.2 Quantile---Quantile (Q---Q) Plots |
|
|
115 | (1) |
|
4.6 Parameter Fitting Using Maximum Likelihood |
|
|
116 | (6) |
|
4.6.1 The Likelihood Function |
|
|
116 | (2) |
|
4.6.2 The Newton-Raphson Method |
|
|
118 | (1) |
|
|
119 | (3) |
|
4.6.4 Sampling Distribution of Maximum-Likelihood Estimates |
|
|
122 | (1) |
|
4.7 Statistical Simulation |
|
|
122 | (8) |
|
4.7.1 Uniform Random-Number Generators |
|
|
123 | (2) |
|
4.7.2 Nonuniform Random-Number Generation by Inversion |
|
|
125 | (1) |
|
4.7.3 Nonuniform Random-Number Generation by Rejection |
|
|
126 | (2) |
|
4.7.4 Box-Muller Method for Gaussian Random-Number Generation |
|
|
128 | (1) |
|
4.7.5 Simulating from Mixture Distributions and Kernel Density Estimates |
|
|
128 | (2) |
|
|
130 | (3) |
|
5 Frequentist Statistical Inference |
|
|
133 | (54) |
|
|
133 | (8) |
|
5.1.1 Parametric versus Nonparametric Inference |
|
|
133 | (1) |
|
5.1.2 The Sampling Distribution |
|
|
134 | (1) |
|
5.1.3 The Elements of Any Hypothesis Test |
|
|
134 | (1) |
|
5.1.4 Test Levels and p Values |
|
|
135 | (1) |
|
5.1.5 Error Types and the Power of a Test |
|
|
135 | (1) |
|
5.1.6 One-Sided versus Two-Sided Tests |
|
|
136 | (1) |
|
5.1.7 Confidence Intervals: Inverting Hypothesis Tests |
|
|
137 | (4) |
|
5.2 Some Commonly Encountered Parametric Tests |
|
|
141 | (17) |
|
|
141 | (1) |
|
5.2.2 Tests for Differences of Mean under Independence |
|
|
142 | (2) |
|
5.2.3 Tests for Differences of Mean for Paired Samples |
|
|
144 | (1) |
|
5.2.4 Tests for Differences of Mean under Serial Dependence |
|
|
145 | (4) |
|
5.2.5 Goodness-of-Fit Tests |
|
|
149 | (7) |
|
5.2.6 Likelihood Ratio Tests |
|
|
156 | (2) |
|
|
158 | (20) |
|
5.3.1 Classical Nonparametric Tests for Location |
|
|
159 | (7) |
|
5.3.2 Mann-Kendall Trend Test |
|
|
166 | (2) |
|
5.3.3 Introduction to Resampling Tests |
|
|
168 | (1) |
|
|
169 | (3) |
|
|
172 | (6) |
|
5.4 Multiplicity and "Field Significance" |
|
|
178 | (7) |
|
5.4.1 The Multiplicity Problem for Independent Tests |
|
|
178 | (2) |
|
5.4.2 Field Significance and the False Discovery Rate |
|
|
180 | (1) |
|
5.4.3 Field Significance and Spatial Correlation |
|
|
181 | (4) |
|
|
185 | (2) |
|
|
187 | (28) |
|
|
187 | (1) |
|
6.2 The Structure of Bayesian Inference |
|
|
188 | (6) |
|
6.2.1 Bayes' Theorem for Continuous Variables |
|
|
188 | (3) |
|
6.2.2 Inference and the Posterior Distribution |
|
|
191 | (1) |
|
6.2.3 The Role of the Prior Distribution |
|
|
192 | (2) |
|
6.2.4 The Predictive Distribution |
|
|
194 | (1) |
|
6.3 Conjugate Distributions |
|
|
194 | (12) |
|
6.3.1 Definition of Conjugate Distributions |
|
|
194 | (1) |
|
6.3.2 Binomial Data-Generating Process |
|
|
195 | (4) |
|
6.3.3 Poisson Data-Generating Process |
|
|
199 | (4) |
|
6.3.4 Gaussian Data-Generating Process |
|
|
203 | (3) |
|
6.4 Dealing with Difficult Integrals |
|
|
206 | (7) |
|
6.4.1 Markov Chain Monte Carlo (MCMC) Methods |
|
|
206 | (1) |
|
6.4.2 The Metropolis-Hastings Algorithm |
|
|
207 | (3) |
|
|
210 | (3) |
|
|
213 | (2) |
|
7 Statistical Forecasting |
|
|
215 | (86) |
|
|
215 | (1) |
|
|
215 | (22) |
|
7.2.1 Simple Linear Regression |
|
|
216 | (2) |
|
7.2.2 Distribution of the Residuals |
|
|
218 | (2) |
|
7.2.3 The Analysis of Variance Table |
|
|
220 | (1) |
|
7.2.4 Goodness-of-Fit Measures |
|
|
221 | (2) |
|
7.2.5 Sampling Distributions of the Regression Coefficients |
|
|
223 | (2) |
|
7.2.6 Examining Residuals |
|
|
225 | (5) |
|
7.2.7 Prediction Intervals |
|
|
230 | (3) |
|
7.2.8 Multiple Linear Regression |
|
|
233 | (1) |
|
7.2.9 Derived Predictor Variables in Multiple Regression |
|
|
233 | (4) |
|
|
237 | (7) |
|
7.3.1 Generalized Linear Models |
|
|
237 | (1) |
|
7.3.2 Logistic Regression |
|
|
238 | (4) |
|
|
242 | (2) |
|
|
244 | (11) |
|
7.4.1 Why Is Careful Predictor Selection Important? |
|
|
244 | (3) |
|
7.4.2 Screening Predictors |
|
|
247 | (2) |
|
|
249 | (3) |
|
|
252 | (3) |
|
7.5 Objective Forecasts Using Traditional Statistical Methods |
|
|
255 | (12) |
|
7.5.1 Classical Statistical Forecasting |
|
|
255 | (2) |
|
7.5.2 Perfect Prog and MOS |
|
|
257 | (7) |
|
7.5.3 Operational MOS Forecasts |
|
|
264 | (3) |
|
|
267 | (17) |
|
7.6.1 Probabilistic Field Forecasts |
|
|
267 | (1) |
|
7.6.2 Stochastic Dynamical Systems in Phase Space |
|
|
267 | (3) |
|
|
270 | (1) |
|
7.6.4 Choosing Initial Ensemble Members |
|
|
271 | (2) |
|
7.6.5 Ensemble Average and Ensemble Dispersion |
|
|
273 | (2) |
|
7.6.6 Graphical Display of Ensemble Forecast Information |
|
|
275 | (7) |
|
7.6.7 Effects of Model Errors |
|
|
282 | (2) |
|
|
284 | (8) |
|
7.7.1 Why Ensembles Need Postprocessing |
|
|
284 | (2) |
|
|
286 | (4) |
|
7.7.3 Kernel Density (Ensemble "Dressing") Methods |
|
|
290 | (2) |
|
7.8 Subjective Probability Forecasts |
|
|
292 | (6) |
|
7.8.1 The Nature of Subjective Forecasts |
|
|
292 | (1) |
|
7.8.2 The Subjective Distribution |
|
|
293 | (1) |
|
7.8.3 Central Credible Interval Forecasts |
|
|
294 | (2) |
|
7.8.4 Assessing Discrete Probabilities |
|
|
296 | (1) |
|
7.8.5 Assessing Continuous Distributions |
|
|
297 | (1) |
|
|
298 | (3) |
|
|
301 | (94) |
|
|
301 | (5) |
|
8.1.1 Purposes of Forecast Verification |
|
|
301 | (1) |
|
8.1.2 The Joint Distribution of Forecasts and Observations |
|
|
302 | (1) |
|
8.1.3 Scalar Attributes of Forecast Performance |
|
|
303 | (2) |
|
|
305 | (1) |
|
8.2 Nonprobabilistic Forecasts for Discrete Predictands |
|
|
306 | (17) |
|
8.2.1 The 2 x 2 Contingency Table |
|
|
306 | (2) |
|
8.2.2 Scalar Attributes of the 2 x 2 Contingency Table |
|
|
308 | (3) |
|
8.2.3 Skill Scores for 2 x 2 Contingency Tables |
|
|
311 | (4) |
|
|
315 | (1) |
|
8.2.5 Conversion of Probabilistic to Nonprobabilistic Forecasts |
|
|
316 | (2) |
|
8.2.6 Extensions for Multicategory Discrete Predictands |
|
|
318 | (5) |
|
8.3 Nonprobabilistic Forecasts for Continuous Predictands |
|
|
323 | (6) |
|
8.3.1 Conditional Quantile Plots |
|
|
324 | (1) |
|
8.3.2 Scalar Accuracy Measures |
|
|
325 | (2) |
|
|
327 | (2) |
|
8.4 Probability Forecasts for Discrete Predictands |
|
|
329 | (22) |
|
8.4.1 The Joint Distribution for Dichotomous Events |
|
|
329 | (2) |
|
|
331 | (1) |
|
8.4.3 Algebraic Decomposition of the Brier Score |
|
|
332 | (2) |
|
8.4.4 The Reliability Diagram |
|
|
334 | (6) |
|
8.4.5 The Discrimination Diagram |
|
|
340 | (1) |
|
8.4.6 The Logarithmic, or Ignorance Score |
|
|
341 | (1) |
|
|
342 | (4) |
|
8.4.8 Hedging, and Strictly Proper Scoring Rules |
|
|
346 | (2) |
|
8.4.9 Probability Forecasts for Multiple-Category Events |
|
|
348 | (3) |
|
8.5 Probability Forecasts for Continuous Predictands |
|
|
351 | (4) |
|
8.5.1 Full Continuous Forecast Probability Distributions |
|
|
351 | (3) |
|
8.5.2 Central Credible Interval Forecasts |
|
|
354 | (1) |
|
8.6 Nonprobabilistic Forecasts for Fields |
|
|
355 | (14) |
|
8.6.1 General Considerations for Field Forecasts |
|
|
355 | (2) |
|
|
357 | (2) |
|
|
359 | (5) |
|
8.6.4 Anomaly Correlation |
|
|
364 | (3) |
|
8.6.5 Field Verification Based on Spatial Structure |
|
|
367 | (2) |
|
8.7 Verification of Ensemble Forecasts |
|
|
369 | (8) |
|
8.7.1 Characteristics of a Good Ensemble Forecast |
|
|
369 | (2) |
|
8.7.2 The Verification Rank Histogram |
|
|
371 | (4) |
|
8.7.3 Minimum Spanning Tree (MST) Histogram |
|
|
375 | (1) |
|
8.7.4 Shadowing, and Bounding Boxes |
|
|
376 | (1) |
|
8.8 Verification Based on Economic Value |
|
|
377 | (5) |
|
8.8.1 Optimal Decision Making and the Cost/Loss Ratio Problem |
|
|
377 | (2) |
|
|
379 | (2) |
|
8.8.3 Connections with Other Verification Approaches |
|
|
381 | (1) |
|
8.9 Verification When the Observation is Uncertain |
|
|
382 | (1) |
|
8.10 Sampling and Inference for Verification Statistics |
|
|
383 | (8) |
|
8.10.1 Sampling Characteristics of Contingency Table Statistics |
|
|
383 | (3) |
|
8.10.2 ROC Diagram Sampling Characteristics |
|
|
386 | (2) |
|
8.10.3 Brier Score and Brier Skill Score Inference |
|
|
388 | (1) |
|
8.10.4 Reliability Diagram Sampling Characteristics |
|
|
389 | (1) |
|
8.10.5 Resampling Verification Statistics |
|
|
390 | (1) |
|
|
391 | (4) |
|
|
395 | (62) |
|
|
395 | (2) |
|
|
395 | (1) |
|
|
396 | (1) |
|
9.1.3 Time-Domain versus Frequency-Domain Approaches |
|
|
396 | (1) |
|
9.2. Time Domain---I Discrete Data |
|
|
397 | (13) |
|
|
397 | (1) |
|
9.2.2 Two-State, First-Order Markov Chains |
|
|
398 | (4) |
|
9.2.3 Test for Independence versus First-Order Serial Dependence |
|
|
402 | (2) |
|
9.2.4 Some Applications of Two-State Markov Chains |
|
|
404 | (2) |
|
9.2.5 Multiple-State Markov Chains |
|
|
406 | (1) |
|
9.2.6 Higher-Order Markov Chains |
|
|
407 | (1) |
|
9.2.7 Deciding among Alternative Orders of Markov Chains |
|
|
408 | (2) |
|
9.3. Time Domain---II Continuous Data |
|
|
410 | (18) |
|
9.3.1 First-Order Autoregression |
|
|
410 | (4) |
|
9.3.2 Higher-Order Autoregressions |
|
|
414 | (1) |
|
|
415 | (4) |
|
9.3.4 Order Selection Criteria |
|
|
419 | (2) |
|
9.3.5 The Variance of a Time Average |
|
|
421 | (2) |
|
9.3.6 Autoregressive-Moving Average Models |
|
|
423 | (1) |
|
9.3.7 Simulation and Forecasting with Continuous Time-Domain Models |
|
|
424 | (4) |
|
9.4. Frequency Domain---I Harmonic Analysis |
|
|
428 | (10) |
|
9.4.1 Cosine and Sine Functions |
|
|
428 | (1) |
|
9.4.2 Representing a Simple Time Series with a Harmonic Function |
|
|
429 | (3) |
|
9.4.3 Estimation of the Amplitude and Phase of a Single Harmonic |
|
|
432 | (3) |
|
|
435 | (3) |
|
9.5 Frequency Domain---II Spectral Analysis |
|
|
438 | (17) |
|
9.5.1 The Harmonic Functions as Uncorrelated Regression Predictors |
|
|
438 | (2) |
|
9.5.2 The Periodogram, or Fourier Line Spectrum |
|
|
440 | (4) |
|
|
444 | (1) |
|
|
445 | (2) |
|
9.5.5 The Spectra of Autoregressive Models |
|
|
447 | (3) |
|
9.5.6 Sampling Properties of Spectral Estimates |
|
|
450 | (5) |
|
|
455 | (2) |
|
Part III Multivariate Statistics |
|
|
457 | (160) |
|
10 Matrix Algebra and Random Matrices |
|
|
459 | (32) |
|
10.1 Background to Multivariate Statistics |
|
|
459 | (2) |
|
10.1.1 Contrasts between Multivariate and Univariate Statistics |
|
|
459 | (1) |
|
10.1.2 Organization of Data and Basic Notation |
|
|
459 | (1) |
|
10.1.3 Multivariate Extensions of Common Univariate Statistics |
|
|
460 | (1) |
|
10.2 Multivariate Distance |
|
|
461 | (3) |
|
10.2.1 Euclidean Distance |
|
|
462 | (1) |
|
10.2.2 Mahalanobis (Statistical) Distance |
|
|
463 | (1) |
|
10.3 Matrix Algebra Review |
|
|
464 | (18) |
|
|
464 | (3) |
|
|
467 | (9) |
|
10.3.3 Eigenvalues and Eigenvectors of a Square Matrix |
|
|
476 | (3) |
|
10.3.4 Square Roots of a Symmetric Matrix |
|
|
479 | (2) |
|
10.3.5 Singular-Value Decomposition (SVD) |
|
|
481 | (1) |
|
10.4 Random Vectors and Matrices |
|
|
482 | (7) |
|
10.4.1 Expectations and Other Extensions of Univariate Concepts |
|
|
482 | (1) |
|
10.4.2 Partitioning Vectors and Matrices |
|
|
483 | (2) |
|
10.4.3 Linear Combinations |
|
|
485 | (2) |
|
10.4.4 Mahalanobis Distance, Revisited |
|
|
487 | (2) |
|
|
489 | (2) |
|
11 The Multivariate Normal (MVN) Distribution |
|
|
491 | (28) |
|
11.1 Definition of the MVN |
|
|
491 | (2) |
|
11.2 Four Handy Properties of the MVN |
|
|
493 | (3) |
|
11.3 Assessing Multinormality |
|
|
496 | (3) |
|
11.4 Simulation from the Multivariate Normal Distribution |
|
|
499 | (5) |
|
11.4.1 Simulating Independent MVN Variates |
|
|
499 | (1) |
|
11.4.2 Simulating Multivariate Time Series |
|
|
500 | (4) |
|
11.5 Inferences about a Multinormal Mean Vector |
|
|
504 | (13) |
|
11.5.1 Multivariate Central Limit Theorem |
|
|
504 | (1) |
|
|
505 | (6) |
|
11.5.3 Simultaneous Confidence Statements |
|
|
511 | (4) |
|
11.5.4 Interpretation of Multivariate Statistical Significance |
|
|
515 | (2) |
|
|
517 | (2) |
|
12 Principal Component (EOF) Analysis |
|
|
519 | (44) |
|
12.1 Basics of Principal Component Analysis |
|
|
519 | (12) |
|
|
519 | (6) |
|
12.1.2 PCA Based on the Covariance Matrix versus the Correlation Matrix |
|
|
525 | (2) |
|
12.1.3 The Varied Terminology of PCA |
|
|
527 | (1) |
|
12.1.4 Scaling Conventions in PCA |
|
|
528 | (2) |
|
12.1.5 Connections to the Multivariate Normal Distribution |
|
|
530 | (1) |
|
12.2 Application of PCA to Geophysical Fields |
|
|
531 | (7) |
|
12.2.1 PCA for a Single Field |
|
|
531 | (2) |
|
12.2.2 Simultaneous PCA for Multiple Fields |
|
|
533 | (3) |
|
12.2.3 Scaling Considerations and Equalization of Variance |
|
|
536 | (1) |
|
12.2.4 Domain Size Effects: Buell Patterns |
|
|
536 | (2) |
|
12.3 Truncation of the Principal Components |
|
|
538 | (4) |
|
12.3.1 Why Truncate the Principal Components? |
|
|
538 | (1) |
|
12.3.2 Subjective Truncation Criteria |
|
|
539 | (1) |
|
12.3.3 Rules Based on the Size of the Last Retained Eigenvalue |
|
|
539 | (2) |
|
12.3.4 Rules Based on Hypothesis-Testing Ideas |
|
|
541 | (1) |
|
12.3.5 Rules Based on Structure in the Retained Principal Components |
|
|
542 | (1) |
|
12.4 Sampling Properties of the Eigenvalues and Eigenvectors |
|
|
542 | (5) |
|
12.4.1 Asymptotic Sampling Results for Multivariate Normal Data |
|
|
542 | (2) |
|
12.4.2 Effective Multiplets |
|
|
544 | (1) |
|
12.4.3 The North et al. Rule of Thumb |
|
|
545 | (2) |
|
12.4.4 Bootstrap Approximations to the Sampling Distributions |
|
|
547 | (1) |
|
12.5 Rotation of the Eigenvectors |
|
|
547 | (7) |
|
12.5.1 Why Rotate the Eigenvectors? |
|
|
547 | (1) |
|
12.5.2 Rotation Mechanics |
|
|
548 | (3) |
|
12.5.3 Sensitivity of Orthogonal Rotation to Initial Eigenvector Scaling |
|
|
551 | (3) |
|
12.6 Computational Considerations |
|
|
554 | (1) |
|
12.6.1 Direct Extraction of Eigenvalues and Eigenvectors from [ S] |
|
|
554 | (1) |
|
|
555 | (1) |
|
12.7 Some Additional Uses of PCA |
|
|
555 | (7) |
|
12.7.1 Singular Spectrum Analysis (SSA): Time-Series PCA |
|
|
555 | (4) |
|
12.7.2 Principal-Component Regression |
|
|
559 | (1) |
|
|
560 | (2) |
|
|
562 | (1) |
|
13 Canonical Correlation Analysis (CCA) |
|
|
563 | (20) |
|
|
563 | (8) |
|
|
563 | (1) |
|
13.1.2 Canonical Variates, Canonical Vectors, and Canonical Correlations |
|
|
564 | (1) |
|
13.1.3 Some Additional Properties of CCA |
|
|
565 | (6) |
|
13.2 CCA Applied to Fields |
|
|
571 | (5) |
|
13.2.1 Translating Canonical Vectors to Maps |
|
|
571 | (1) |
|
13.2.2 Combining CCA with PCA |
|
|
572 | (1) |
|
13.2.3 Forecasting with CCA |
|
|
572 | (4) |
|
13.3 Computational Considerations |
|
|
576 | (4) |
|
13.3.1 Calculating CCA through Direct Eigendecomposition |
|
|
576 | (1) |
|
|
577 | (3) |
|
13.4 Maximum Covariance Analysis (MCA) |
|
|
580 | (2) |
|
|
582 | (1) |
|
14 Discrimination and Classification |
|
|
583 | (20) |
|
14.1 Discrimination versus Classification |
|
|
583 | (1) |
|
14.2 Separating Two Populations |
|
|
583 | (9) |
|
14.2.1 Equal Covariance Structure: Fisher's Linear Discriminant |
|
|
583 | (5) |
|
14.2.2 Fisher's Linear Discriminant for Multivariate Normal Data |
|
|
588 | (1) |
|
14.2.3 Minimizing Expected Cost of Misclassification |
|
|
589 | (2) |
|
14.2.4 Unequal Covariances: Quadratic Discrimination |
|
|
591 | (1) |
|
14.3 Multiple Discriminant Analysis (MDA) |
|
|
592 | (5) |
|
14.3.1 Fisher's Procedure for More Than Two Groups |
|
|
592 | (3) |
|
14.3.2 Minimizing Expected Cost of Misclassification |
|
|
595 | (1) |
|
14.3.3 Probabilistic Classification |
|
|
596 | (1) |
|
14.4 Forecasting with Discriminant Analysis |
|
|
597 | (2) |
|
14.5 Alternatives to Classical Discriminant Analysis |
|
|
599 | (2) |
|
14.5.1 Discrimination and Classification Using Logistic Regression |
|
|
599 | (1) |
|
14.5.2 Discrimination and Classification Using Kernel Density Estimates |
|
|
600 | (1) |
|
|
601 | (2) |
|
|
603 | (14) |
|
|
603 | (1) |
|
15.1.1 Cluster Analysis versus Discriminant Analysis |
|
|
603 | (1) |
|
15.1.2 Distance Measures and the Distance Matrix |
|
|
603 | (1) |
|
15.2 Hierarchical Clustering |
|
|
604 | (10) |
|
15.2.1 Agglomerative Methods Using the Distance Matrix |
|
|
604 | (2) |
|
15.2.2 Ward's Minimum Variance Method |
|
|
606 | (1) |
|
15.2.3 The Dendrogram, or Tree Diagram |
|
|
607 | (1) |
|
15.2.4 How Many Clusters? |
|
|
607 | (5) |
|
|
612 | (2) |
|
15.3 Nonhierarchical Clustering |
|
|
614 | (1) |
|
15.3.1 The K-Means Method |
|
|
614 | (1) |
|
15.3.2 Nucleated Agglomerative Clustering |
|
|
614 | (1) |
|
15.3.3 Clustering Using Mixture Distributions |
|
|
615 | (1) |
|
|
615 | (2) |
Appendix A Example Data Sets |
|
617 | (2) |
Appendix B Probability Tables |
|
619 | (8) |
Appendix C Answers to Exercises |
|
627 | (8) |
References |
|
635 | (26) |
Index |
|
661 | |