Atjaunināt sīkdatņu piekrišanu

E-grāmata: Statistical Physics of Synchronization

  • Formāts: PDF+DRM
  • Sērija : SpringerBriefs in Complexity
  • Izdošanas datums: 28-Aug-2018
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319966649
  • Formāts - PDF+DRM
  • Cena: 65,42 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : SpringerBriefs in Complexity
  • Izdošanas datums: 28-Aug-2018
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319966649

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book introduces and discusses the analysis of interacting many-body complex systems exhibiting spontaneous synchronization from the perspective of nonequilibrium statistical physics. While such systems have been mostly studied using dynamical system theory, the book underlines the usefulness of the statistical physics approach to obtain insightful results in a number of representative dynamical settings. Although it is intractable to follow the dynamics of a particular initial condition, statistical physics allows to derive exact analytical results in the limit of an infinite number of interacting units. Chapter one discusses dynamical characterization of individual units of synchronizing systems as well as of their interaction and summarizes the relevant tools of statistical physics. The latter are then used in chapters two and three to discuss respectively synchronizing systems with either a first- or a second-order evolution in time. This book provides a timely introduction to the subject and is meant for the uninitiated as well as for experienced researchers working in areas of nonlinear dynamics and chaos, statistical physics, and complex systems.
Synchronizing systems.-  Introduction.-  The oscillators and their
interaction: A qualitative discussion.-  Oscillators as limit cycles.-
Interacting limit-cycle oscillators.- Synchronizing systems as statistical
mechanical systems.- The features of a statistical physical description.-
Some results for noiseless interacting oscillators.- The oscillators with
inertia.- Appendix 1: A two-dimensional dynamics with a limit-cycle
attractor.- Appendix 2: The Lyapunov exponents.- Appendix 3: The one-body
distribution function in an N-body system.- Oscillators with first-order
dynamics.- The oscillators with distributed natural frequencies.- The
Kuramoto model.- Unimodal symmetric g(w).- Nonunimodal g(w).- Appendix 1: An
H-theorem for a particular simple case.- Appendix 2: Form of the function
r(K) for symmetric and unimodal frequency distributions in the Kuramoto
model.- Appendix 3: The numerical solution of Eq. (2.34).- Oscillators with
second-order dynamics.-  Generalized Kuramoto model with inertia and noise.- 
Nonequilibrium first-order synchronization phase transition: Simulation
results.- Analysis in the continuum limit: The Kramers equation.- Phase
diagram: Comparison with numeric.- Appendix 1: The noiseless Kuramoto model
with inertia: Connection with electrical power distribution models.- Appendix
2: Proof that the dynamics (3.9) does not satisfy detailed balance.- Appendix
3: Simulation details for the dynamics (3.9).- Appendix 4: Derivation of the
Kramers equation.- Appendix 5: Nature of solutions of Eq. (3.32).- Appendix
6: Solution of the system of equations (3.39).- Appendix 7: Convergence
properties of the expansion (3.38).