Preface to 1st edition |
|
v | |
Preface to 2nd edition |
|
vi | |
|
|
1 | (7) |
|
|
1 | (1) |
|
|
1 | (1) |
|
1.3 The average basis of the behaviour of matter |
|
|
2 | (1) |
|
|
2 | (1) |
|
1.5 Distinct, independent particles |
|
|
3 | (1) |
|
1.6 Configurations: sharing out the energy |
|
|
3 | (1) |
|
|
3 | (1) |
|
1.8 Equal probability of microstates |
|
|
4 | (1) |
|
1.9 Conservation of number and energy |
|
|
5 | (1) |
|
1.10 The predominant configuration |
|
|
5 | (1) |
|
1.11 Maximization subject to constraints |
|
|
6 | (1) |
|
|
7 | (1) |
|
2 Sum over states: the molecular partition function |
|
|
8 | (4) |
|
|
8 | (1) |
|
2.2 Occupation numbers, n of molecular energy states |
|
|
8 | (1) |
|
2.3 The molecular partition function, q |
|
|
9 | (1) |
|
2.4 Energy states and energy levels |
|
|
10 | (1) |
|
2.5 The partition function explored |
|
|
10 | (1) |
|
|
11 | (1) |
|
3 Applications of the molecular partition function |
|
|
12 | (4) |
|
|
12 | (1) |
|
3.2 The molecular energy, E |
|
|
12 | (1) |
|
3.3 The internal energy, U |
|
|
12 | (1) |
|
3.4 The relationship of β to temperature |
|
|
13 | (1) |
|
3.5 The statistical entropy |
|
|
13 | (2) |
|
|
15 | (1) |
|
4 From molecule to mole: the canonical partition function |
|
|
16 | (4) |
|
|
16 | (1) |
|
|
16 | (2) |
|
|
18 | (1) |
|
|
18 | (2) |
|
5 Distinguishable and indistinguishable particles |
|
|
20 | (4) |
|
|
20 | (1) |
|
|
20 | (1) |
|
5.3 Distinguishable and indistinguishable particles |
|
|
21 | (1) |
|
|
21 | (1) |
|
5.5 The number of states per particle |
|
|
22 | (1) |
|
5.6 What is indistinguishability? |
|
|
23 | (1) |
|
|
23 | (1) |
|
6 Two-level systems: a case study |
|
|
24 | (7) |
|
|
24 | (1) |
|
6.2 The effect of increasing temperature |
|
|
24 | (2) |
|
6.3 The two-level molecular partition function |
|
|
26 | (1) |
|
6.4 The energy of a two-level system |
|
|
26 | (1) |
|
6.5 The two-level heat capacity, Cv |
|
|
27 | (2) |
|
6.6 The effect of degeneracy |
|
|
29 | (1) |
|
|
30 | (1) |
|
7 Thermodynamic functions: towards a statistical toolkit |
|
|
31 | (10) |
|
|
31 | (1) |
|
|
31 | (1) |
|
7.3 The internal energy, U |
|
|
32 | (1) |
|
|
33 | (1) |
|
7.5 The Helmholtz energy, A: the Massieu bridge |
|
|
34 | (1) |
|
7.6 The internal energy, U, revisited |
|
|
35 | (1) |
|
7.7 The equation of state and the pressure, p |
|
|
35 | (1) |
|
7.8 The heat capacity, Cv |
|
|
36 | (1) |
|
7.9 The entropy, S, revisited |
|
|
36 | (1) |
|
|
37 | (1) |
|
7.11 The Gibbs free energy, G |
|
|
37 | (2) |
|
7.12 A full set of toolkit equations |
|
|
39 | (1) |
|
|
39 | (2) |
|
8 The ideal monatomic gas: the translational partition function |
|
|
41 | (8) |
|
|
41 | (1) |
|
8.2 The translational partition function, qtrs |
|
|
41 | (2) |
|
8.3 The ideal monatomic gas: thermodynamic functions |
|
|
43 | (2) |
|
8.4 The entropy of the ideal monatomic gas |
|
|
45 | (1) |
|
8.5 Using the Sackur-Tetrode equation |
|
|
46 | (2) |
|
|
48 | (1) |
|
9 The ideal diatomic gas: internal degrees of freedom |
|
|
49 | (6) |
|
|
49 | (1) |
|
9.2 Internal modes: separability of energies |
|
|
49 | (1) |
|
9.3 Weak coupling: factorizing the energy modes |
|
|
50 | (2) |
|
9.4 Factorizing translational energy modes |
|
|
52 | (1) |
|
9.5 Factorizing internal energy modes |
|
|
52 | (1) |
|
9.6 The canonical partition function, Q |
|
|
53 | (1) |
|
|
54 | (1) |
|
10 The ideal diatomic gas: the rotational partition function |
|
|
55 | (8) |
|
|
55 | (1) |
|
|
55 | (1) |
|
10.3 The continuum approximation: test of validity |
|
|
56 | (1) |
|
10.4 Accessible states and symmetry |
|
|
57 | (1) |
|
10.5 Origin of the symmetry factor |
|
|
58 | (2) |
|
10.6 The canonical partition function for rotation |
|
|
60 | (1) |
|
10.7 Rotational energy, heat capacity, and entropy |
|
|
60 | (1) |
|
10.8 Extension to polyatomic molecules |
|
|
61 | (1) |
|
|
61 | (2) |
|
11 Ortho and para spin states: a case study |
|
|
63 | (4) |
|
|
63 | (1) |
|
11.2 Nuclear spin wavefunctions |
|
|
63 | (1) |
|
11.3 ortho- and para-hydrogen |
|
|
64 | (1) |
|
11.4 A special case: nuclei with zero spin |
|
|
65 | (1) |
|
|
66 | (1) |
|
|
66 | (1) |
|
12 The ideal diatomic gas: the vibrational partition function |
|
|
67 | (8) |
|
|
67 | (1) |
|
12.2 The diatomic SHO model |
|
|
67 | (1) |
|
12.3 The vibrational partition function, qvib |
|
|
68 | (1) |
|
12.4 High temperature limiting behaviour of qvib |
|
|
69 | (1) |
|
12.5 The canonical partition function, Qvib |
|
|
69 | (1) |
|
12.6 Vibrational energy Uvib |
|
|
70 | (1) |
|
12.7 The zero-point energy |
|
|
70 | (1) |
|
12.8 Vibrational heat capacity, Cvib |
|
|
71 | (1) |
|
12.9 The vibrational entropy, Svib |
|
|
71 | (1) |
|
12.10 From torsional oscillation to internal rotation |
|
|
72 | (2) |
|
|
74 | (1) |
|
13 The electronic partition function |
|
|
75 | (5) |
|
|
75 | (1) |
|
13.2 The characteristic electronic temperature, θel |
|
|
75 | (1) |
|
|
76 | (1) |
|
13.4 The electronic partition function |
|
|
77 | (1) |
|
13.5 The singular case of NO |
|
|
78 | (1) |
|
|
79 | (1) |
|
14 Heat capacity and Third Law entropy: two case studies |
|
|
80 | (7) |
|
|
80 | (1) |
|
14.2 The heat capacity Cv,m as a function of temperature |
|
|
80 | (1) |
|
14.3 The maximum in Crot,m |
|
|
81 | (1) |
|
14.4 Calorimetric and spectroscopic entropy |
|
|
82 | (2) |
|
|
84 | (2) |
|
|
86 | (1) |
|
15 Calculating equilibrium constants |
|
|
87 | (17) |
|
|
87 | (1) |
|
15.2 The molar Gibbs free energy |
|
|
87 | (2) |
|
15.3 The equilibrium constant |
|
|
89 | (1) |
|
15.4 Interpreting the equilibrium constant |
|
|
89 | (1) |
|
15.5 Aspects of the equilibrium constant |
|
|
90 | (3) |
|
15.6 Calculating equilibrium constants |
|
|
93 | (9) |
|
|
102 | (1) |
|
|
103 | (1) |
Questions and problems |
|
104 | (6) |
Additional mathematical aspects |
|
110 | (9) |
Index |
|
119 | |