Preface |
|
xv | |
Author biographies |
|
xvii | |
|
|
1 | (16) |
|
1.1 Introduction to financial derivatives |
|
|
2 | (4) |
|
1.2 Financial derivatives --- what's the big deal? |
|
|
6 | (3) |
|
|
9 | (5) |
|
1.3.1 No autocorrelation in returns |
|
|
10 | (1) |
|
1.3.2 Unconditional heavy tails |
|
|
10 | (1) |
|
1.3.3 Gain/loss asymmetry |
|
|
10 | (1) |
|
1.3.4 Aggregational Gaussianity |
|
|
11 | (1) |
|
1.3.5 Volatility clustering |
|
|
12 | (1) |
|
1.3.6 Conditional heavy tails |
|
|
12 | (1) |
|
1.3.7 Significant autocorrelation for absolute returns |
|
|
12 | (1) |
|
|
13 | (1) |
|
|
14 | (3) |
|
|
17 | (20) |
|
|
18 | (3) |
|
2.1.1 Future and present value of a single payment |
|
|
18 | (1) |
|
|
19 | (1) |
|
2.1.3 Future value of an annuity |
|
|
19 | (1) |
|
2.1.4 Present value of a unit annuity |
|
|
20 | (1) |
|
|
21 | (4) |
|
2.3 Continuously compounded interest rates |
|
|
25 | (2) |
|
2.4 Interest rate options: caps and floors |
|
|
27 | (5) |
|
|
32 | (1) |
|
|
32 | (5) |
|
|
37 | (20) |
|
3.1 The binomial one-period model |
|
|
37 | (2) |
|
|
39 | (5) |
|
3.2.1 Risk-neutral probabilities |
|
|
40 | (1) |
|
3.2.2 Complete and incomplete markets |
|
|
41 | (3) |
|
|
44 | (9) |
|
3.3.1 σ-algebras and information sets |
|
|
47 | (2) |
|
3.3.2 Financial multiperiod markets |
|
|
49 | (1) |
|
3.3.3 Martingale measures |
|
|
50 | (3) |
|
|
53 | (1) |
|
|
53 | (4) |
|
4 Linear time series models |
|
|
57 | (16) |
|
|
57 | (2) |
|
4.2 Linear systems in the time domain |
|
|
59 | (3) |
|
4.3 Linear stochastic processes |
|
|
62 | (1) |
|
4.4 Linear processes with a rational transfer function |
|
|
63 | (3) |
|
|
63 | (1) |
|
|
64 | (1) |
|
|
65 | (1) |
|
4.5 Autocovariance functions |
|
|
66 | (1) |
|
4.5.1 Autocovariance function for ARMA processes |
|
|
66 | (1) |
|
4.6 Prediction in linear processes |
|
|
67 | (2) |
|
|
69 | (4) |
|
5 Nonlinear time series models |
|
|
73 | (30) |
|
|
73 | (1) |
|
5.2 Aim of model building |
|
|
73 | (1) |
|
5.3 Qualitative properties of the models |
|
|
74 | (3) |
|
5.3.1 Volterra series expansion |
|
|
74 | (1) |
|
5.3.2 Generalized transfer functions |
|
|
75 | (2) |
|
|
77 | (5) |
|
5.4.1 Maximum likelihood estimation |
|
|
77 | (1) |
|
5.4.1.1 Cramer--Rao bound |
|
|
78 | (1) |
|
5.4.1.2 The likelihood ratio test |
|
|
79 | (1) |
|
5.4.2 Quasi-maximum likelihood |
|
|
79 | (1) |
|
5.4.3 Generalized method of moments |
|
|
80 | (1) |
|
5.4.3.1 GMM and moment restrictions |
|
|
80 | (1) |
|
5.4.3.2 Standard error of the estimates |
|
|
81 | (1) |
|
5.4.3.3 Estimation of the weight matrix |
|
|
81 | (1) |
|
5.4.3.4 Nested tests for model reduction |
|
|
82 | (1) |
|
|
82 | (16) |
|
5.5.1 Threshold and regime models |
|
|
84 | (1) |
|
5.5.1.1 Self-exciting threshold AR (SETAR) |
|
|
84 | (2) |
|
5.5.1.2 Self-exciting threshold ARMA (SETARMA) |
|
|
86 | (1) |
|
5.5.1.3 Open loop threshold AR (TARSO) |
|
|
86 | (1) |
|
5.5.1.4 Smooth threshold AR (STAR) |
|
|
86 | (1) |
|
5.5.1.5 Hidden Markov models and related models |
|
|
87 | (2) |
|
5.5.2 Models with conditional heteroscedasticity (ARCH) |
|
|
89 | (1) |
|
5.5.2.1 ARCH regression model |
|
|
89 | (1) |
|
|
90 | (1) |
|
|
91 | (1) |
|
|
92 | (1) |
|
|
92 | (1) |
|
|
93 | (1) |
|
5.5.2.7 General remarks on ARCH models |
|
|
93 | (2) |
|
5.5.2.8 Multivariate GARCH models |
|
|
95 | (1) |
|
5.5.3 Stochastic volatility models |
|
|
96 | (2) |
|
|
98 | (1) |
|
5.7 Prediction in nonlinear models |
|
|
98 | (1) |
|
5.8 Applications of nonlinear models |
|
|
99 | (2) |
|
5.8.1 Electricity spot prices |
|
|
99 | (1) |
|
5.8.2 Comparing ARCH models |
|
|
100 | (1) |
|
|
101 | (2) |
|
6 Kernel estimators in time series analysis |
|
|
103 | (14) |
|
6.1 Non-parametric estimation |
|
|
103 | (1) |
|
6.2 Kernel estimators for time series |
|
|
103 | (3) |
|
|
103 | (1) |
|
|
104 | (1) |
|
6.2.3 Central limit theorems |
|
|
105 | (1) |
|
6.3 Kernel estimation for regression |
|
|
106 | (4) |
|
6.3.1 Estimator for regression |
|
|
106 | (1) |
|
|
107 | (1) |
|
6.3.3 Non-parametric estimation of the pdf |
|
|
108 | (1) |
|
|
108 | (1) |
|
|
108 | (1) |
|
6.3.6 Selection of bandwidth --- cross validation |
|
|
109 | (1) |
|
6.3.7 Variance of the non-parametric estimates |
|
|
109 | (1) |
|
6.4 Applications of kernel estimators |
|
|
110 | (6) |
|
6.4.1 Non-parametric estimation of the conditional mean and variance |
|
|
110 | (1) |
|
6.4.2 Non-parametric estimation of non-stationarity --- an example |
|
|
111 | (2) |
|
6.4.3 Non-parametric estimation of dependence on external variables --- an example |
|
|
113 | (1) |
|
6.4.4 Non-parametric GARCH models |
|
|
114 | (2) |
|
|
116 | (1) |
|
|
117 | (22) |
|
|
118 | (2) |
|
|
120 | (2) |
|
|
122 | (3) |
|
7.4 Ito stochastic calculus |
|
|
125 | (5) |
|
7.5 Extensions to jump processes |
|
|
130 | (6) |
|
|
136 | (3) |
|
8 Stochastic differential equations |
|
|
139 | (36) |
|
8.1 Stochastic Differential Equations |
|
|
140 | (12) |
|
8.1.1 Existence and uniqueness |
|
|
142 | (5) |
|
|
147 | (2) |
|
|
149 | (2) |
|
|
151 | (1) |
|
8.2 Analytical solution methods |
|
|
152 | (4) |
|
8.2.1 Linear, univariate SDEs |
|
|
152 | (4) |
|
8.3 Feynman--Kac representation |
|
|
156 | (3) |
|
8.4 Girsanov measure transformation |
|
|
159 | (12) |
|
|
159 | (2) |
|
8.4.2 Radon--Nikodym theorem |
|
|
161 | (3) |
|
8.4.3 Girsanov transformation |
|
|
164 | (4) |
|
8.4.4 Maximum likelihood estimation for continuously observed diffusions |
|
|
168 | (3) |
|
|
171 | (1) |
|
|
172 | (3) |
|
9 Continuous-time security markets |
|
|
175 | (20) |
|
9.1 From discrete to continuous time |
|
|
175 | (2) |
|
9.2 Classical arbitrage theory |
|
|
177 | (8) |
|
9.2.1 Black--Scholes formula |
|
|
181 | (2) |
|
|
183 | (1) |
|
9.2.2.1 Quadratic hedging |
|
|
184 | (1) |
|
9.3 Modern approach using martingale measures |
|
|
185 | (4) |
|
|
189 | (1) |
|
|
190 | (1) |
|
9.6 Computational methods |
|
|
191 | (2) |
|
|
192 | (1) |
|
|
193 | (2) |
|
10 Stochastic interest rate models |
|
|
195 | (14) |
|
10.1 Gaussian one-factor models |
|
|
196 | (2) |
|
|
196 | (1) |
|
|
197 | (1) |
|
10.2 A general class of one-factor models |
|
|
198 | (3) |
|
10.3 Time-dependent models |
|
|
201 | (1) |
|
|
201 | (1) |
|
10.3.2 Black--Derman--Toy |
|
|
201 | (1) |
|
|
201 | (1) |
|
|
202 | (1) |
|
10.4 Multifactor and stochastic volatility models |
|
|
202 | (4) |
|
10.4.1 Stochastic volatility models |
|
|
204 | (1) |
|
10.4.2 Affine Term Structure models |
|
|
205 | (1) |
|
|
206 | (1) |
|
|
206 | (3) |
|
11 Term structure of interest rates |
|
|
209 | (44) |
|
|
210 | (11) |
|
11.1.1 Known interest rates |
|
|
210 | (2) |
|
11.1.2 Discrete dividends |
|
|
212 | (2) |
|
|
214 | (3) |
|
11.1.4 Stochastic interest rates |
|
|
217 | (4) |
|
|
221 | (11) |
|
11.2.1 Exogenous specification of the market price of risk |
|
|
227 | (1) |
|
11.2.2 Illustrative example |
|
|
228 | (3) |
|
|
231 | (1) |
|
11.3 Term structure for specific models |
|
|
232 | (8) |
|
11.3.1 Example 1: The Vasicek model |
|
|
235 | (2) |
|
11.3.2 Example 2: The Ho--Lee model |
|
|
237 | (1) |
|
11.3.3 Example 3: The Cox--Ingersoll--Ross model |
|
|
238 | (1) |
|
11.3.4 Multifactor models |
|
|
239 | (1) |
|
11.4 Heath--Jarrow--Morton framework |
|
|
240 | (5) |
|
|
245 | (1) |
|
|
245 | (1) |
|
11.6 Estimation of the term structure --- curve-fitting |
|
|
246 | (3) |
|
11.6.1 Polynomial methods |
|
|
247 | (1) |
|
|
247 | (1) |
|
11.6.3 Nelson--Siegel method |
|
|
247 | (2) |
|
|
249 | (1) |
|
|
250 | (3) |
|
12 Discrete time approximations |
|
|
253 | (12) |
|
12.1 Stochastic Taylor expansion |
|
|
253 | (1) |
|
|
254 | (1) |
|
12.3 Discretization schemes |
|
|
255 | (3) |
|
12.3.1 Strong Taylor approximations |
|
|
255 | (1) |
|
12.3.1.1 Explicit Euler scheme |
|
|
255 | (1) |
|
|
256 | (1) |
|
12.3.1.3 The order 1.5 strong Taylor scheme |
|
|
256 | (1) |
|
12.3.2 Weak Taylor approximations |
|
|
257 | (1) |
|
12.3.2.1 The order 2.0 weak Taylor scheme |
|
|
257 | (1) |
|
12.3.3 Exponential approximation |
|
|
257 | (1) |
|
12.4 Multilevel Monte Carlo |
|
|
258 | (1) |
|
|
259 | (6) |
|
13 Parameter estimation in discretely observed SDEs |
|
|
265 | (18) |
|
|
265 | (1) |
|
13.2 High frequency methods |
|
|
266 | (3) |
|
13.3 Approximate methods for linear and non-linear models |
|
|
269 | (1) |
|
13.4 State dependent diffusion term |
|
|
269 | (2) |
|
13.4.1 A transformation approach |
|
|
269 | (2) |
|
13.5 MLE for non-linear diffusions |
|
|
271 | (3) |
|
13.5.1 Simulation-based estimators |
|
|
271 | (1) |
|
|
272 | (1) |
|
13.5.2 Numerical methods for the Fokker--Planck equation |
|
|
273 | (1) |
|
|
273 | (1) |
|
13.6 Generalized method of moments |
|
|
274 | (3) |
|
13.6.1 GMM and moment restrictions |
|
|
275 | (2) |
|
13.7 Model validation for discretely observed SDEs |
|
|
277 | (3) |
|
13.7.1 Generalized Gaussian residuals |
|
|
277 | (1) |
|
|
278 | (2) |
|
|
280 | (3) |
|
14 Inference in partially observed processes |
|
|
283 | (40) |
|
|
283 | (1) |
|
|
284 | (1) |
|
|
285 | (3) |
|
|
285 | (1) |
|
|
285 | (1) |
|
|
286 | (1) |
|
|
287 | (1) |
|
14.4 Conditional moment estimators |
|
|
288 | (1) |
|
14.4.1 Prediction and updating |
|
|
288 | (1) |
|
|
289 | (1) |
|
|
290 | (6) |
|
14.6.1 Truncated second order filter |
|
|
290 | (1) |
|
14.6.2 Linearized Kalman filter |
|
|
291 | (1) |
|
14.6.3 Extended Kalman filter |
|
|
291 | (2) |
|
14.6.4 Statistically linearized filter |
|
|
293 | (1) |
|
|
294 | (1) |
|
14.6.6 Linear time-varying models |
|
|
295 | (1) |
|
14.6.7 Linear time-invariant models |
|
|
295 | (1) |
|
14.6.8 Case: Affine term structure models |
|
|
296 | (1) |
|
14.7 State filtering and prediction |
|
|
296 | (4) |
|
|
297 | (1) |
|
14.7.1.1 Linear time-varying models |
|
|
297 | (1) |
|
14.7.1.2 Linear time-invariant models |
|
|
297 | (1) |
|
14.7.2 The system equation in discrete time |
|
|
298 | (1) |
|
|
299 | (1) |
|
14.8 Unscented Kalman Filter |
|
|
300 | (2) |
|
14.9 A maximum likelihood method |
|
|
302 | (3) |
|
14.10 Sequential Monte Carlo filters |
|
|
305 | (5) |
|
14.10.1 Optimal filtering |
|
|
306 | (1) |
|
|
307 | (2) |
|
14.10.3 Parameter estimation |
|
|
309 | (1) |
|
14.11 Application of non-linear filters |
|
|
310 | (11) |
|
14.11.1 Sequential calibration of options |
|
|
310 | (4) |
|
14.11.2 Computing Value at Risk in a stochastic volatility model |
|
|
314 | (1) |
|
14.11.3 Extended Kalman filtering applied to bonds |
|
|
315 | (3) |
|
14.11.4 Case 1: A Wiener process |
|
|
318 | (1) |
|
14.11.5 Case 2: The Vasicek model |
|
|
319 | (2) |
|
|
321 | (2) |
|
A Projections in Hilbert spaces |
|
|
323 | (14) |
|
|
323 | (1) |
|
|
324 | (1) |
|
A.3 The projection theorem |
|
|
325 | (4) |
|
A.3.1 Prediction equations |
|
|
328 | (1) |
|
A.4 Conditional expectation and linear projections |
|
|
329 | (3) |
|
|
332 | (2) |
|
|
334 | (3) |
|
|
337 | (8) |
|
B.1 Measures and σ-algebras |
|
|
337 | (1) |
|
B.2 Partitions and information |
|
|
338 | (1) |
|
B.3 Conditional expectation |
|
|
339 | (4) |
|
|
343 | (2) |
Bibliography |
|
345 | (16) |
Index |
|
361 | |