Part I Option Pricing |
|
|
|
3 | (8) |
|
1.1 Recommended Literature |
|
|
9 | (1) |
|
|
9 | (2) |
|
2 Introduction to Option Management |
|
|
11 | (26) |
|
|
11 | (10) |
|
|
21 | (6) |
|
2.3 Binary One-Period Model |
|
|
27 | (5) |
|
2.4 Recommended Literature |
|
|
32 | (1) |
|
|
32 | (5) |
|
3 Basic Concepts of Probability Theory |
|
|
37 | (12) |
|
3.1 Real Valued Random Variables |
|
|
37 | (3) |
|
3.2 Expectation and Variance |
|
|
40 | (1) |
|
3.3 Skewness and Kurtosis |
|
|
41 | (1) |
|
3.4 Random Vectors, Dependence, Correlation |
|
|
42 | (1) |
|
3.5 Conditional Probabilities and Expectations |
|
|
43 | (2) |
|
3.6 Recommended Literature |
|
|
45 | (1) |
|
|
45 | (4) |
|
4 Stochastic Processes in Discrete Time |
|
|
49 | (10) |
|
|
49 | (4) |
|
|
53 | (1) |
|
|
54 | (1) |
|
4.4 Geometric Random Walks |
|
|
55 | (2) |
|
4.5 Binomial Models with State Dependent Increments |
|
|
57 | (1) |
|
4.6 Recommended Literature |
|
|
57 | (1) |
|
|
58 | (1) |
|
5 Stochastic Integrals and Differential Equations |
|
|
59 | (16) |
|
|
59 | (4) |
|
5.2 Stochastic Integration |
|
|
63 | (2) |
|
5.3 Stochastic Differential Equations |
|
|
65 | (3) |
|
5.4 The Stock Price as a Stochastic Process |
|
|
68 | (2) |
|
|
70 | (3) |
|
5.6 Recommended Literature |
|
|
73 | (1) |
|
|
73 | (2) |
|
6 BlackScholes Option Pricing Model |
|
|
75 | (46) |
|
6.1 BlackScholes Differential Equation |
|
|
75 | (7) |
|
6.2 BlackScholes Formula for European Options |
|
|
82 | (6) |
|
6.2.1 Numerical Approximation |
|
|
86 | (2) |
|
|
88 | (11) |
|
6.3.1 Linear Congruential Generator |
|
|
89 | (4) |
|
6.3.2 Fibonacci Generators |
|
|
93 | (2) |
|
|
95 | (1) |
|
|
96 | (1) |
|
|
97 | (2) |
|
6.4 Risk Management and Hedging |
|
|
99 | (15) |
|
|
101 | (3) |
|
|
104 | (3) |
|
|
107 | (1) |
|
|
108 | (2) |
|
6.4.5 Historical and Implied Volatility |
|
|
110 | (3) |
|
6.4.6 Realised Volatility |
|
|
113 | (1) |
|
6.5 Recommended Literature |
|
|
114 | (1) |
|
|
114 | (7) |
|
7 Binomial Model for European Options |
|
|
121 | (12) |
|
7.1 CoxRossRubinstein Approach to Option Pricing |
|
|
122 | (3) |
|
|
125 | (5) |
|
7.2.1 Dividends as a Percentage of the Stock Price |
|
|
127 | (1) |
|
7.2.2 Dividends as a Fixed Amount of Money |
|
|
128 | (2) |
|
7.3 Recommended Literature |
|
|
130 | (1) |
|
|
130 | (3) |
|
|
133 | (14) |
|
8.1 Arbitrage Relations for American Options |
|
|
133 | (7) |
|
|
140 | (4) |
|
8.3 Recommended Literature |
|
|
144 | (1) |
|
|
144 | (3) |
|
|
147 | (14) |
|
9.1 Compound Options, Option on Option |
|
|
148 | (2) |
|
9.2 Chooser Options or "As You Wish" Options |
|
|
150 | (1) |
|
|
150 | (2) |
|
|
152 | (2) |
|
|
154 | (2) |
|
|
156 | (1) |
|
|
157 | (1) |
|
9.8 Recommended Literature |
|
|
158 | (1) |
|
|
158 | (3) |
|
10 Interest Rates and Interest Rate Derivatives |
|
|
161 | (38) |
|
10.1 Definitions and Notation |
|
|
162 | (3) |
|
10.1.1 Money Market Account |
|
|
164 | (1) |
|
10.2 Risk Neutral Valuation and Numeraire Measures |
|
|
165 | (6) |
|
10.2.1 Principles of Risk Neutral Valuation |
|
|
165 | (1) |
|
10.2.2 Change of Numeraire |
|
|
166 | (1) |
|
10.2.3 Equivalent Martingale Measure |
|
|
167 | (1) |
|
10.2.4 Traditional Risk Neutral Numeraire |
|
|
168 | (1) |
|
10.2.5 Other Choices of Numeraire |
|
|
169 | (2) |
|
10.3 Interest Rate Derivatives |
|
|
171 | (6) |
|
10.3.1 Forward Rate Agreement |
|
|
171 | (1) |
|
10.3.2 Interest Rate Swap |
|
|
171 | (2) |
|
|
173 | (1) |
|
|
174 | (1) |
|
|
175 | (1) |
|
|
176 | (1) |
|
10.4 Interest Rate Modeling |
|
|
177 | (9) |
|
|
178 | (3) |
|
10.4.2 Heath Jarrow Morton Framework |
|
|
181 | (3) |
|
10.4.3 LIBOR Market Model |
|
|
184 | (2) |
|
|
186 | (3) |
|
10.5.1 The Bond Valuation Equation |
|
|
186 | (1) |
|
10.5.2 Solving the Zero Bond Valuation |
|
|
187 | (2) |
|
10.6 Calibrating Interest Rate Models |
|
|
189 | (6) |
|
10.6.1 CIR Model: Estimation |
|
|
189 | (2) |
|
10.6.2 CIR Model: Implementation Results |
|
|
191 | (1) |
|
10.6.3 LMM: Discretization of the Forward Rate |
|
|
192 | (1) |
|
10.6.4 LMM: Instantaneous Volatility Function |
|
|
193 | (1) |
|
10.6.5 LMM: Implementation Results |
|
|
194 | (1) |
|
10.7 Recommended Literature |
|
|
195 | (1) |
|
|
196 | (3) |
Part II Statistical Models of Financial Time Series |
|
|
11 Introduction: Definitions and Concepts |
|
|
199 | (38) |
|
|
200 | (6) |
|
11.2 Statistical Analysis of German and British Stock Returns |
|
|
206 | (3) |
|
11.3 Expectations and Efficient Markets |
|
|
209 | (5) |
|
11.4 Econometric Models: A Brief Summary |
|
|
214 | (10) |
|
11.4.1 Stock Prices: The CAPM |
|
|
214 | (1) |
|
11.4.2 Exchange Rate: Theory of the Interest Rate Parity |
|
|
215 | (2) |
|
11.4.3 Term Structure: The CoxIngersollRoss Model |
|
|
217 | (3) |
|
11.4.4 Options: The BlackScholes Model |
|
|
220 | (1) |
|
11.4.5 The Market Price of Risk |
|
|
221 | (3) |
|
11.5 The Random Walk Hypothesis |
|
|
224 | (2) |
|
|
226 | (7) |
|
11.6.1 DickeyFuller Test |
|
|
226 | (3) |
|
|
229 | (2) |
|
11.6.3 Variance Ratio Tests |
|
|
231 | (2) |
|
11.7 Recommended Literature |
|
|
233 | (1) |
|
|
234 | (3) |
|
12 ARIMA Time Series Models |
|
|
237 | (26) |
|
12.1 Moving Average Processes |
|
|
238 | (1) |
|
12.2 Autoregressive Process |
|
|
239 | (4) |
|
|
243 | (1) |
|
12.4 Partial Autocorrelation |
|
|
244 | (3) |
|
12.5 Estimation of Moments |
|
|
247 | (4) |
|
12.5.1 Estimation of the Mean Function |
|
|
248 | (1) |
|
12.5.2 Estimation of the Covariance Function |
|
|
249 | (1) |
|
12.5.3 Estimation of the ACF |
|
|
250 | (1) |
|
12.6 Portmanteau Statistics |
|
|
251 | (1) |
|
12.7 Estimation of AR(p) Models |
|
|
252 | (1) |
|
12.8 Estimation of MA(q) and ARMA(p, q) Models |
|
|
253 | (5) |
|
12.9 Recommended Literature |
|
|
258 | (1) |
|
|
258 | (5) |
|
13 Time Series with Stochastic Volatility |
|
|
263 | (54) |
|
13.1 ARCH and GARCH Models |
|
|
265 | (20) |
|
13.1.1 ARCH(1): Definition and Properties |
|
|
267 | (7) |
|
13.1.2 Estimation of ARCH(1) Models |
|
|
274 | (4) |
|
13.1.3 ARCH(q): Definition and Properties |
|
|
278 | (1) |
|
13.1.4 Estimation of an ARCH(q) Model |
|
|
279 | (1) |
|
13.1.5 Generalized ARCH (GARCH) |
|
|
280 | (2) |
|
13.1.6 Estimation of GARCH(p, q) Models |
|
|
282 | (3) |
|
13.2 Extensions of the GARCH Model |
|
|
285 | (5) |
|
|
285 | (2) |
|
13.2.2 Threshold ARCH Models |
|
|
287 | (1) |
|
|
288 | (1) |
|
13.2.4 Estimation Results for DAX and FTSE 100 Returns |
|
|
289 | (1) |
|
|
290 | (8) |
|
13.3.1 Recent Challenges to GARCH Models |
|
|
290 | (7) |
|
13.3.2 Volatility Forecasting for DAX and FTSE 100 Returns |
|
|
297 | (1) |
|
13.4 Multivariate GARCH Models |
|
|
298 | (9) |
|
13.4.1 The Vec Specification |
|
|
299 | (3) |
|
13.4.2 The BEKK Specification |
|
|
302 | (1) |
|
|
303 | (1) |
|
|
303 | (1) |
|
13.4.5 An Empirical Illustration |
|
|
304 | (3) |
|
13.5 Continuous-Time GARCH Models |
|
|
307 | (5) |
|
13.5.1 COGARCH(1,1): Definition and Properties |
|
|
308 | (1) |
|
13.5.2 Relation Between GARCH and COGARCH |
|
|
309 | (1) |
|
13.5.3 Estimation of the COGARCH(1,1) Model |
|
|
310 | (1) |
|
13.5.4 Extensions of the COGARCH Model |
|
|
311 | (1) |
|
13.6 Recommended Literature |
|
|
312 | (1) |
|
|
313 | (4) |
|
14 Long Memory Time Series |
|
|
317 | (22) |
|
14.1 Definition of Long Range Dependence |
|
|
318 | (1) |
|
14.2 Fractional Integration and Long-Memory |
|
|
319 | (2) |
|
14.3 Long Memory and Self-similar Processes |
|
|
321 | (3) |
|
14.4 Detection of the Long Memory |
|
|
324 | (3) |
|
14.4.1 Rescaled Range and Rescaled Variance Test |
|
|
324 | (2) |
|
14.4.2 Semiparametric Test |
|
|
326 | (1) |
|
14.4.3 Tests for Spurious Long Memory |
|
|
326 | (1) |
|
14.5 Estimation of the Long Memory Parameter |
|
|
327 | (3) |
|
14.5.1 Exact Maximum Likelihood Estimator |
|
|
327 | (1) |
|
14.5.2 Regression on the Periodogram |
|
|
328 | (1) |
|
14.5.3 Gaussian Semiparametric Estimator |
|
|
329 | (1) |
|
|
330 | (4) |
|
|
330 | (1) |
|
14.6.2 GARCH Long Memory Models |
|
|
331 | (2) |
|
|
333 | (1) |
|
|
334 | (1) |
|
14.7 An Empirical Illustration |
|
|
334 | (3) |
|
14.8 Recommended Literature |
|
|
337 | (2) |
|
15 Non-parametric and Flexible Time Series Estimators |
|
|
339 | (20) |
|
15.1 Non-parametric Regression |
|
|
340 | (2) |
|
15.2 Construction of the Estimator |
|
|
342 | (2) |
|
15.3 Empirical Illustration |
|
|
344 | (1) |
|
15.4 Flexible Volatility Estimators |
|
|
345 | (1) |
|
15.5 Pricing Options with ARCH-Models |
|
|
346 | (6) |
|
15.6 Application to the Valuation of DAX Calls |
|
|
352 | (3) |
|
15.7 Recommended Literature |
|
|
355 | (4) |
Part III Selected Financial Applications |
|
|
16 Value-at-Risk and Backtesting |
|
|
359 | (14) |
|
16.1 Forecast and VaR Models |
|
|
360 | (3) |
|
16.2 Backtesting with Expected Shortfall |
|
|
363 | (1) |
|
16.3 Backtesting in Action |
|
|
364 | (5) |
|
16.4 Recommended Literature |
|
|
369 | (1) |
|
|
369 | (4) |
|
17 Copulae and Value at Risk |
|
|
373 | (40) |
|
|
375 | (2) |
|
|
377 | (10) |
|
|
378 | (1) |
|
17.2.2 Elliptical Copulae |
|
|
378 | (4) |
|
17.2.3 Archimedean Copulae |
|
|
382 | (3) |
|
17.2.4 Hierarchical Archimedean Copulae |
|
|
385 | (1) |
|
|
386 | (1) |
|
17.3 Monte Carlo Simulation |
|
|
387 | (4) |
|
17.3.1 Conditional Inverse Method |
|
|
387 | (4) |
|
17.3.2 MarshalOlkin Method |
|
|
391 | (1) |
|
|
391 | (5) |
|
17.4.1 Full Maximum Likelihood Estimation |
|
|
393 | (1) |
|
17.4.2 Inference for Margins |
|
|
393 | (1) |
|
17.4.3 Canonical Maximum Likelihood |
|
|
394 | (1) |
|
17.4.4 Gaussian Copula Estimation |
|
|
395 | (1) |
|
17.4.5 t-Copula Estimation |
|
|
396 | (1) |
|
|
396 | (1) |
|
17.6 Value-at-Risk of the Portfolio Returns |
|
|
397 | (11) |
|
|
401 | (4) |
|
17.6.2 Three-Dimensional Portfolio |
|
|
405 | (3) |
|
17.7 Recommended Literature |
|
|
408 | (3) |
|
|
411 | (2) |
|
18 Statistics of Extreme Risks |
|
|
413 | (38) |
|
|
413 | (2) |
|
|
415 | (3) |
|
|
418 | (22) |
|
18.3.1 The Block Maxima Method |
|
|
419 | (10) |
|
18.3.2 The Peaks-over-Threshold (POT) Method |
|
|
429 | (11) |
|
|
440 | (1) |
|
|
441 | (5) |
|
18.6 Recommended Literature |
|
|
446 | (1) |
|
|
447 | (4) |
|
|
451 | (26) |
|
19.1 From Perceptron to Non-linear Neuron |
|
|
452 | (7) |
|
|
459 | (2) |
|
19.3 Neural Networks in Non-parametric Regression Analysis |
|
|
461 | (6) |
|
19.4 Forecasts of Financial Time Series with Neural Networks |
|
|
467 | (4) |
|
19.5 Quantifying Risk with Neural Networks |
|
|
471 | (4) |
|
19.6 Recommended Literature |
|
|
475 | (2) |
|
20 Volatility Risk of Option Portfolios |
|
|
477 | (14) |
|
20.1 Description of the Data |
|
|
478 | (3) |
|
20.2 Principal Component Analysis of the VDAX's Dynamics |
|
|
481 | (2) |
|
20.3 Stability Analysis of the VDAX's Dynamics |
|
|
483 | (2) |
|
20.4 Measure of the Implied Volatility's Risk |
|
|
485 | (2) |
|
20.5 Recommended Literature |
|
|
487 | (1) |
|
|
487 | (4) |
|
21 Non-parametric Estimators for the Probability of Default |
|
|
491 | (8) |
|
|
491 | (2) |
|
21.2 Semi-parametric Model for Credit Rating |
|
|
493 | (4) |
|
21.3 Credit Ratings with Neural Networks |
|
|
497 | (2) |
|
22 Credit Risk Management and Credit Derivatives |
|
|
499 | (24) |
|
|
499 | (2) |
|
|
501 | (1) |
|
|
502 | (2) |
|
22.3.1 Bernoulli vs. Poisson |
|
|
503 | (1) |
|
22.4 The Industrial Models |
|
|
504 | (4) |
|
22.4.1 CreditMetrics and KMV Models |
|
|
504 | (1) |
|
|
505 | (2) |
|
|
507 | (1) |
|
|
508 | (2) |
|
22.6 Copulae and Loss Distributions |
|
|
510 | (4) |
|
22.7 Collateralized Debt Obligations |
|
|
514 | (7) |
|
|
521 | (2) |
A Technical Appendix |
|
523 | (12) |
|
|
523 | (4) |
|
|
527 | (8) |
Symbols and Notations |
|
535 | (4) |
References |
|
539 | (12) |
Index |
|
551 | |