Foreword |
|
xiii | |
Preface |
|
xv | |
Symbol Description |
|
xix | |
|
1 Computational Hydrodynamics |
|
|
1 | (68) |
|
1.1 To Grid or Not to Grid: A Primer on Hydrocodes |
|
|
3 | (6) |
|
1.1.1 From One-Zone Models to Multidimensional Codes |
|
|
8 | (1) |
|
1.2 Equations of Stellar Structure |
|
|
9 | (10) |
|
1.2.1 Mass Conservation: The Continuity Equation |
|
|
9 | (1) |
|
1.2.2 Energy Conservation |
|
|
10 | (1) |
|
1.2.3 Momentum Conservation |
|
|
11 | (2) |
|
|
13 | (1) |
|
|
13 | (2) |
|
|
15 | (1) |
|
|
16 | (3) |
|
1.3 A Touch of Hydrodynamics |
|
|
19 | (8) |
|
|
19 | (1) |
|
|
20 | (2) |
|
1.3.3 Shock Waves and the Physics of Combustion |
|
|
22 | (1) |
|
1.3.3.1 Deflagrations vs. Detonations |
|
|
23 | (4) |
|
1.4 Grid-Based Methods: The Realm of Finite Differences |
|
|
27 | (7) |
|
1.4.1 Equations of Stellar Structure in Finite Differences |
|
|
29 | (3) |
|
1.4.2 Nuclear Reaction Networks |
|
|
32 | (1) |
|
|
32 | (1) |
|
1.4.2.2 Bader--Deufihard's and Gear's Methods |
|
|
33 | (1) |
|
1.5 Gridless Methods: Smoothed-Particle Hydrodynamics |
|
|
34 | (3) |
|
1.5.1 Briefing on SPH Methods: Weighted Sums, Kernels, and Smoothing Lengths |
|
|
34 | (2) |
|
|
36 | (1) |
|
1.6 Building a ID Hydrodynamic Code |
|
|
37 | (11) |
|
1.6.1 Differential Equations for the Free-Fall Collapse Problem |
|
|
37 | (2) |
|
1.6.2 Variable Assignment |
|
|
39 | (1) |
|
|
39 | (1) |
|
1.6.4 Initial Models, Boundary Conditions, and Scaling |
|
|
40 | (1) |
|
|
41 | (1) |
|
1.6.5.1 Equations for the Innermost Shell |
|
|
41 | (1) |
|
1.6.5.2 Equations for the Intermediate Shells |
|
|
41 | (1) |
|
1.6.5.3 Equations for the Outermost Shell |
|
|
42 | (1) |
|
|
42 | (3) |
|
1.6.7 Theory vs. Simulation |
|
|
45 | (3) |
|
1.7 Code Validation and Verification |
|
|
48 | (16) |
|
|
48 | (1) |
|
1.7.1.1 Sod's Shock Tube Test |
|
|
49 | (3) |
|
1.7.1.2 Emery's Wind Tunnel Test |
|
|
52 | (2) |
|
1.7.1.3 Sedov's Blast Wave Problem |
|
|
54 | (3) |
|
|
57 | (3) |
|
|
60 | (4) |
|
|
64 | (5) |
|
|
69 | (48) |
|
2.1 Nuclear Prelude: Abundances, Masses, and Binding Energies |
|
|
72 | (3) |
|
|
75 | (7) |
|
2.2.1 Barrier Penetration |
|
|
75 | (3) |
|
2.2.2 Fusion Cross-Sections |
|
|
78 | (1) |
|
|
79 | (3) |
|
|
82 | (11) |
|
2.3.1 Nonresonant Charged-Particle Reactions |
|
|
83 | (2) |
|
2.3.2 Resonant Charged-Particle Reactions |
|
|
85 | (3) |
|
|
88 | (1) |
|
2.3.4 Photodisintegrations |
|
|
89 | (1) |
|
2.3.5 Neutron-Induced Reactions |
|
|
90 | (1) |
|
2.3.6 Weak Interactions: Electron Captures and β-Decays |
|
|
91 | (2) |
|
2.4 Stellar Evolution in a Nutshell: H- to Si-Burning |
|
|
93 | (22) |
|
|
97 | (1) |
|
2.4.1.1 Proton--Proton Chains |
|
|
98 | (2) |
|
|
100 | (2) |
|
2.4.1.3 H-Burning beyond the CNO Mass Region |
|
|
102 | (1) |
|
2.4.1.4 Explosive Hydrogen Burning |
|
|
103 | (3) |
|
|
106 | (1) |
|
2.4.2.1 Hydrostatic He-Burning |
|
|
106 | (1) |
|
2.4.2.2 Explosive (Hydrogen and) Helium Burning |
|
|
107 | (1) |
|
2.4.3 Advanced Burning Stages |
|
|
108 | (1) |
|
|
108 | (1) |
|
|
109 | (1) |
|
|
110 | (1) |
|
|
110 | (1) |
|
2.4.3.5 Road toward Nuclear Statistical Equilibrium |
|
|
111 | (1) |
|
2.4.3.6 Nucleosynthesis beyond Iron: The s-, r-, and p-Processes |
|
|
112 | (3) |
|
|
115 | (2) |
|
3 Cosmochemistry and Presolar Grains |
|
|
117 | (30) |
|
3.1 Meteorites and Stellar Astrophysics |
|
|
117 | (4) |
|
3.2 Grain Formation and Growth |
|
|
121 | (3) |
|
|
124 | (7) |
|
3.3.1 Shinning Bright Like a (Nano) Diamond |
|
|
124 | (2) |
|
3.3.2 Silicon Carbide Grains |
|
|
126 | (1) |
|
|
127 | (1) |
|
|
127 | (3) |
|
|
130 | (1) |
|
|
130 | (1) |
|
3.4 Experimental Techniques and Instruments |
|
|
131 | (15) |
|
|
131 | (1) |
|
3.4.1.1 Scanning Electron Microscopy (SEM) |
|
|
131 | (2) |
|
3.4.1.2 Transmission Electron Microscopy (TEM) |
|
|
133 | (2) |
|
3.4.1.3 Focused Ion-Beam Microscopy (FIB) |
|
|
135 | (1) |
|
|
135 | (1) |
|
3.4.2.1 Secondary Ion Mass Spectrometry (SIMS) |
|
|
136 | (4) |
|
3.4.2.2 Resonant Ionization Mass Spectrometry (RIMS) |
|
|
140 | (1) |
|
3.4.2.3 Thermal Ionization Mass Spectrometry (TIMS) |
|
|
140 | (1) |
|
3.4.2.4 Multicollector Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS) |
|
|
141 | (1) |
|
3.4.2.5 Accelerator Mass Spectrometry (AMS) |
|
|
141 | (5) |
|
|
146 | (1) |
|
4 Classical and Recurrent Novae |
|
|
147 | (52) |
|
4.1 Stellae Novae: Beacons in the Ocean of Night |
|
|
147 | (3) |
|
4.2 Classical and Recurrent Novae: The Big Picture |
|
|
150 | (1) |
|
4.3 Designing a Nova Outburst |
|
|
151 | (9) |
|
4.3.1 The Roadmap toward Multidimensional Models |
|
|
155 | (5) |
|
4.4 Nova Nuclear Symphony |
|
|
160 | (21) |
|
4.4.1 Nova Nucleosynthesis |
|
|
161 | (8) |
|
4.4.2 Novae and the Galactic Alchemy: 13C, 15N, and 17O |
|
|
169 | (3) |
|
|
172 | (1) |
|
|
172 | (2) |
|
|
174 | (2) |
|
|
176 | (3) |
|
4.4.4 Nuclear Uncertainties |
|
|
179 | (1) |
|
|
180 | (1) |
|
|
180 | (1) |
|
|
180 | (1) |
|
|
181 | (5) |
|
4.5.1 Fast Rise to Bolometric Maximum |
|
|
181 | (1) |
|
4.5.2 Rise to Visual Maximum |
|
|
182 | (1) |
|
4.5.3 The Constant Bolometric Luminosity Stage |
|
|
183 | (1) |
|
4.5.4 Shutting Down a Nova: X-Ray Emission and the Turn-Off Phase |
|
|
184 | (2) |
|
4.6 Observational Constraints |
|
|
186 | (8) |
|
4.6.1 Spectroscopic Abundances |
|
|
186 | (3) |
|
4.6.2 Presolar Nova Grains |
|
|
189 | (5) |
|
|
194 | (5) |
|
|
199 | (60) |
|
5.1 Historical Supernovae |
|
|
199 | (7) |
|
|
199 | (1) |
|
|
200 | (1) |
|
|
200 | (1) |
|
|
201 | (1) |
|
|
202 | (1) |
|
|
202 | (3) |
|
|
205 | (1) |
|
5.2 Spectroscopy of Supernovae |
|
|
206 | (10) |
|
5.2.1 Spectral Evolution of Type Ia Supernovae |
|
|
210 | (3) |
|
|
213 | (3) |
|
5.3 Light Curves: Supernova Pyrotechnics |
|
|
216 | (8) |
|
5.3.1 Supernovae and Cosmology |
|
|
217 | (2) |
|
5.3.1.1 Type Ia Supernovae and the Accelerated Expansion of the Universe |
|
|
219 | (5) |
|
|
224 | (7) |
|
5.4.1 Single-Degenerate Scenario |
|
|
225 | (1) |
|
5.4.1.1 Fate of Sub-Chandrasekhar Mass Explosions |
|
|
225 | (2) |
|
5.4.2 Double-Degenerate Scenario |
|
|
227 | (1) |
|
5.4.2.1 When White Dwarfs Merge: Gravitational Waves and Nucleosynthesis |
|
|
228 | (3) |
|
5.5 Blowing Up Stars in the Laptop: The Modeling of Type Ia Supernovae |
|
|
231 | (27) |
|
5.5.1 Preexplosive Evolution: The Accretion Phase |
|
|
234 | (1) |
|
|
234 | (4) |
|
5.5.1.2 He-Rich Accretion |
|
|
238 | (4) |
|
5.5.2 Explosive Evolution and Nucleosynthesis |
|
|
242 | (6) |
|
5.5.3 Deflagration to Detonation Transitions and Other State-of-the-Art Models |
|
|
248 | (3) |
|
|
251 | (4) |
|
5.5.5 Nuclear Uncertainties |
|
|
255 | (3) |
|
|
258 | (1) |
|
6 X-Ray Bursts and Superbursts |
|
|
259 | (36) |
|
6.1 Discovery of X-Ray Bursts |
|
|
260 | (2) |
|
6.2 Observational Constraints |
|
|
262 | (4) |
|
6.2.1 Orbital Periods and Masses |
|
|
262 | (2) |
|
6.2.2 Light Curves and Spectra |
|
|
264 | (2) |
|
6.3 A Spark to a Flame: Outlining the Explosion Mechanism |
|
|
266 | (21) |
|
6.3.1 Clues on the Nature of X-Ray Bursts |
|
|
266 | (1) |
|
6.3.2 X-Ray Fireworks: Modeling the Bursts |
|
|
267 | (7) |
|
6.3.3 The X-Ray Philosopher's Stone: Nucleosynthesis in Type I X-Ray Bursts |
|
|
274 | (5) |
|
6.3.4 Nuclear Uncertainties |
|
|
279 | (3) |
|
|
282 | (1) |
|
|
283 | (1) |
|
|
283 | (1) |
|
6.3.5 Multidimensional Simulations of X-Ray Bursts |
|
|
283 | (4) |
|
|
287 | (5) |
|
|
292 | (3) |
|
7 Core-Collapse Supernovae |
|
|
295 | (44) |
|
|
297 | (2) |
|
7.2 Observations of Core-Collapse Supernovae: Spectra and Light Curves |
|
|
299 | (6) |
|
|
300 | (2) |
|
|
302 | (1) |
|
|
302 | (1) |
|
|
303 | (1) |
|
7.2.5 Type I Core-Collapses: Supernovae Ib and Ic |
|
|
303 | (1) |
|
7.2.6 Cosmology and Type II Supernovae |
|
|
304 | (1) |
|
7.3 Core-Collapse Supernovae: Evolution beyond Core Silicon Burning and Explosion |
|
|
305 | (7) |
|
7.3.1 Early Models: Prompt Shocks and Neutrino Transport |
|
|
305 | (6) |
|
7.3.2 Shock Waves and Explosive Burning Regimes |
|
|
311 | (1) |
|
|
312 | (10) |
|
|
313 | (1) |
|
7.4.2 The r-Process: Mergers or Blasts? |
|
|
314 | (5) |
|
|
319 | (1) |
|
7.4.4 Neutrino-Driven Nucleosynthesis: The ν- and νp-Processes |
|
|
320 | (2) |
|
7.5 Observational Constraints |
|
|
322 | (8) |
|
|
322 | (4) |
|
7.5.2 Presolar Supernova Grains |
|
|
326 | (2) |
|
7.5.2.1 Silicon Carbide Grains of Types X and C |
|
|
328 | (1) |
|
|
328 | (1) |
|
|
329 | (1) |
|
7.5.2.4 Silicon Nitride Grains |
|
|
329 | (1) |
|
7.5.2.5 Oxide and Silicate Grains |
|
|
329 | (1) |
|
7.6 Supernovae, Neutron Star Mergers, and the Origin of Gamma-Ray Bursts |
|
|
330 | (7) |
|
|
337 | (2) |
Appendix A Henyey Method for Arbitrary Hydrodynamic Problems |
|
339 | (8) |
Appendix B Computer Program for the Free-Fall Collapse Problem |
|
347 | (14) |
Bibliography |
|
361 | (84) |
Index |
|
445 | |