Atjaunināt sīkdatņu piekrišanu

E-grāmata: Stellar Explosions: Hydrodynamics and Nucleosynthesis

(Department of Physics, Technical University of Catalonia (UPC), Barcelona, Spain)
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 57,60 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Stars are the main factories of element production in the universe through a suite of complex and intertwined physical processes. Such stellar alchemy is driven by multiple nuclear interactions that through eons have transformed the pristine, metal-poor ashes leftover by the Big Bang into a cosmos with 100 distinct chemical species. The products of stellar nucleosynthesis frequently get mixed inside stars by convective transport or through hydrodynamic instabilities, and a fraction of them is eventually ejected into the interstellar medium, thus polluting the cosmos with gas and dust.

The study of the physics of the stars and their role as nucleosynthesis factories owes much to cross-fertilization of different, somehow disconnected fields, ranging from observational astronomy, computational astrophysics, and cosmochemistry to experimental and theoretical nuclear physics. Few books have simultaneously addressed the multidisciplinary nature of this field in an engaging way suitable for students and young scientists.

Providing the required multidisciplinary background in a coherent way has been the driving force for Stellar Explosions: Hydrodynamics and Nucleosynthesis. Written by a specialist in stellar astrophysics, this book presents a rigorous but accessible treatment of the physics of stellar explosions from a multidisciplinary perspective at the crossroads of computational astrophysics, observational astronomy, cosmochemistry, and nuclear physics. Basic concepts from all these different fields are applied to the study of classical and recurrent novae, type I and II supernovae, X-ray bursts and superbursts, and stellar mergers. The book shows how a multidisciplinary approach has been instrumental in our understanding of nucleosynthesis in stars, particularly during explosive events.

Recenzijas

"The text is well-written throughout and treats the topic with mathematical rigour. It is fully referenced to scientific publications, mostly journal articles...the book features end-of-chapter problems with solutions available on the corresponding CRC website. As a nice feature, there are also end-of-chapter boxes with the main take-home messages and open scientific problems for each topic. The text is illustrated by numerous black and white figures and photographs...Owing to this breadth of scientific work involved in the discussion, the book may not only be recommended as a textbook for students taking a corresponding course within astronomy or astrophysics, but also as a reference for more advanced readers." Manuel Vogel, in Contemporary Physics (October 2016)

"In this thorough textbook, José uniquely and ambitiously addresses stellar astrophysics from a theoretical, a computational, and an observational perspective. The book is written to introduce astronomers to underlying nuclear physics and to introduce physicists to the observational astronomy of these systems. Many researchers utilize advanced computational modeling to study phenomena such as novae and supernovae; José presents an excellent overview of the types of codes used as well as the advantages and disadvantages of each. Along with the appendix, a sample FORTRAN code, useful for learning the techniques in more advanced codes, is presented. For researchers studying stellar explosions and their connection to the creation of elements in the universe, each chapter provides derivations and quantitative analysis necessary to understand astronomical observations of these phenomena. Models are also used to interpret the observations. Helpful features within the text are chapters ending with a summary and a page of unsolved problems currently under investigation in the astronomical community." Dr. C. Palma, Pennsylvania State University, in Choice (Octob

Foreword xiii
Preface xv
Symbol Description xix
1 Computational Hydrodynamics
1(68)
1.1 To Grid or Not to Grid: A Primer on Hydrocodes
3(6)
1.1.1 From One-Zone Models to Multidimensional Codes
8(1)
1.2 Equations of Stellar Structure
9(10)
1.2.1 Mass Conservation: The Continuity Equation
9(1)
1.2.2 Energy Conservation
10(1)
1.2.3 Momentum Conservation
11(2)
1.2.4 Energy Transport
13(1)
1.2.4.1 Radiation
13(2)
1.2.4.2 Conduction
15(1)
1.2.4.3 Convection
16(3)
1.3 A Touch of Hydrodynamics
19(8)
1.3.1 Timescales
19(1)
1.3.2 Instabilities
20(2)
1.3.3 Shock Waves and the Physics of Combustion
22(1)
1.3.3.1 Deflagrations vs. Detonations
23(4)
1.4 Grid-Based Methods: The Realm of Finite Differences
27(7)
1.4.1 Equations of Stellar Structure in Finite Differences
29(3)
1.4.2 Nuclear Reaction Networks
32(1)
1.4.2.1 Wagoner's Method
32(1)
1.4.2.2 Bader--Deufihard's and Gear's Methods
33(1)
1.5 Gridless Methods: Smoothed-Particle Hydrodynamics
34(3)
1.5.1 Briefing on SPH Methods: Weighted Sums, Kernels, and Smoothing Lengths
34(2)
1.5.2 SPH Equations
36(1)
1.6 Building a ID Hydrodynamic Code
37(11)
1.6.1 Differential Equations for the Free-Fall Collapse Problem
37(2)
1.6.2 Variable Assignment
39(1)
1.6.3 Discretization
39(1)
1.6.4 Initial Models, Boundary Conditions, and Scaling
40(1)
1.6.5 Henyey Method
41(1)
1.6.5.1 Equations for the Innermost Shell
41(1)
1.6.5.2 Equations for the Intermediate Shells
41(1)
1.6.5.3 Equations for the Outermost Shell
42(1)
1.6.6 Linearization
42(3)
1.6.7 Theory vs. Simulation
45(3)
1.7 Code Validation and Verification
48(16)
1.7.1 Verification Tests
48(1)
1.7.1.1 Sod's Shock Tube Test
49(3)
1.7.1.2 Emery's Wind Tunnel Test
52(2)
1.7.1.3 Sedov's Blast Wave Problem
54(3)
1.7.1.4 Cellular Test
57(3)
1.7.2 Validation Tests
60(4)
1.8 Exercises
64(5)
2 Nuclear Physics
69(48)
2.1 Nuclear Prelude: Abundances, Masses, and Binding Energies
72(3)
2.2 Nuclear Fusion
75(7)
2.2.1 Barrier Penetration
75(3)
2.2.2 Fusion Cross-Sections
78(1)
2.2.2.1 Resonances
79(3)
2.3 Nuclear Interactions
82(11)
2.3.1 Nonresonant Charged-Particle Reactions
83(2)
2.3.2 Resonant Charged-Particle Reactions
85(3)
2.3.3 Electron Screening
88(1)
2.3.4 Photodisintegrations
89(1)
2.3.5 Neutron-Induced Reactions
90(1)
2.3.6 Weak Interactions: Electron Captures and β-Decays
91(2)
2.4 Stellar Evolution in a Nutshell: H- to Si-Burning
93(22)
2.4.1 Hydrogen Burning
97(1)
2.4.1.1 Proton--Proton Chains
98(2)
2.4.1.2 CNO Cycles
100(2)
2.4.1.3 H-Burning beyond the CNO Mass Region
102(1)
2.4.1.4 Explosive Hydrogen Burning
103(3)
2.4.2 Helium Burning
106(1)
2.4.2.1 Hydrostatic He-Burning
106(1)
2.4.2.2 Explosive (Hydrogen and) Helium Burning
107(1)
2.4.3 Advanced Burning Stages
108(1)
2.4.3.1 Carbon Burning
108(1)
2.4.3.2 Neon Burning
109(1)
2.4.3.3 Oxygen Burning
110(1)
2.4.3.4 Silicon Burning
110(1)
2.4.3.5 Road toward Nuclear Statistical Equilibrium
111(1)
2.4.3.6 Nucleosynthesis beyond Iron: The s-, r-, and p-Processes
112(3)
2.5 Exercises
115(2)
3 Cosmochemistry and Presolar Grains
117(30)
3.1 Meteorites and Stellar Astrophysics
117(4)
3.2 Grain Formation and Growth
121(3)
3.3 The Stardust Market
124(7)
3.3.1 Shinning Bright Like a (Nano) Diamond
124(2)
3.3.2 Silicon Carbide Grains
126(1)
3.3.3 Silicon Nitrides
127(1)
3.3.4 Graphites
127(3)
3.3.5 Presolar Oxides
130(1)
3.3.6 Silicates
130(1)
3.4 Experimental Techniques and Instruments
131(15)
3.4.1 Imaging Techniques
131(1)
3.4.1.1 Scanning Electron Microscopy (SEM)
131(2)
3.4.1.2 Transmission Electron Microscopy (TEM)
133(2)
3.4.1.3 Focused Ion-Beam Microscopy (FIB)
135(1)
3.4.2 Mass Spectrometry
135(1)
3.4.2.1 Secondary Ion Mass Spectrometry (SIMS)
136(4)
3.4.2.2 Resonant Ionization Mass Spectrometry (RIMS)
140(1)
3.4.2.3 Thermal Ionization Mass Spectrometry (TIMS)
140(1)
3.4.2.4 Multicollector Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS)
141(1)
3.4.2.5 Accelerator Mass Spectrometry (AMS)
141(5)
3.5 Exercises
146(1)
4 Classical and Recurrent Novae
147(52)
4.1 Stellae Novae: Beacons in the Ocean of Night
147(3)
4.2 Classical and Recurrent Novae: The Big Picture
150(1)
4.3 Designing a Nova Outburst
151(9)
4.3.1 The Roadmap toward Multidimensional Models
155(5)
4.4 Nova Nuclear Symphony
160(21)
4.4.1 Nova Nucleosynthesis
161(8)
4.4.2 Novae and the Galactic Alchemy: 13C, 15N, and 17O
169(3)
4.4.3 γ-Ray Emitters
172(1)
4.4.3.1 13N and 18F
172(2)
4.4.3.2 7Be-7Li
174(2)
4.4.3.3 22Na and 26Al
176(3)
4.4.4 Nuclear Uncertainties
179(1)
4.4.4.1 18F(p, α)
180(1)
4.4.4.2 25Al(p, γ)
180(1)
4.4.4.3 30P(p, γ)
180(1)
4.5 Nova Light Curve
181(5)
4.5.1 Fast Rise to Bolometric Maximum
181(1)
4.5.2 Rise to Visual Maximum
182(1)
4.5.3 The Constant Bolometric Luminosity Stage
183(1)
4.5.4 Shutting Down a Nova: X-Ray Emission and the Turn-Off Phase
184(2)
4.6 Observational Constraints
186(8)
4.6.1 Spectroscopic Abundances
186(3)
4.6.2 Presolar Nova Grains
189(5)
4.7 Exercises
194(5)
5 Type Ia Supernovae
199(60)
5.1 Historical Supernovae
199(7)
5.1.1 SN 185
199(1)
5.1.2 SN 393
200(1)
5.1.3 SN 1006
200(1)
5.1.4 SN 1054
201(1)
5.1.5 SN 1181
202(1)
5.1.6 Tycho's Supernova
202(3)
5.1.7 Kepler's Supernova
205(1)
5.2 Spectroscopy of Supernovae
206(10)
5.2.1 Spectral Evolution of Type Ia Supernovae
210(3)
5.2.2 Spectropolarimetry
213(3)
5.3 Light Curves: Supernova Pyrotechnics
216(8)
5.3.1 Supernovae and Cosmology
217(2)
5.3.1.1 Type Ia Supernovae and the Accelerated Expansion of the Universe
219(5)
5.4 Progenitors
224(7)
5.4.1 Single-Degenerate Scenario
225(1)
5.4.1.1 Fate of Sub-Chandrasekhar Mass Explosions
225(2)
5.4.2 Double-Degenerate Scenario
227(1)
5.4.2.1 When White Dwarfs Merge: Gravitational Waves and Nucleosynthesis
228(3)
5.5 Blowing Up Stars in the Laptop: The Modeling of Type Ia Supernovae
231(27)
5.5.1 Preexplosive Evolution: The Accretion Phase
234(1)
5.5.1.1 H-Rich Accretion
234(4)
5.5.1.2 He-Rich Accretion
238(4)
5.5.2 Explosive Evolution and Nucleosynthesis
242(6)
5.5.3 Deflagration to Detonation Transitions and Other State-of-the-Art Models
248(3)
5.5.4 γ-Ray Emission
251(4)
5.5.5 Nuclear Uncertainties
255(3)
5.6 Exercises
258(1)
6 X-Ray Bursts and Superbursts
259(36)
6.1 Discovery of X-Ray Bursts
260(2)
6.2 Observational Constraints
262(4)
6.2.1 Orbital Periods and Masses
262(2)
6.2.2 Light Curves and Spectra
264(2)
6.3 A Spark to a Flame: Outlining the Explosion Mechanism
266(21)
6.3.1 Clues on the Nature of X-Ray Bursts
266(1)
6.3.2 X-Ray Fireworks: Modeling the Bursts
267(7)
6.3.3 The X-Ray Philosopher's Stone: Nucleosynthesis in Type I X-Ray Bursts
274(5)
6.3.4 Nuclear Uncertainties
279(3)
6.3.4.1 15O(α, γ)
282(1)
6.3.4.2 18Ne(α, p)
283(1)
6.3.4.3 65As(p, γ)
283(1)
6.3.5 Multidimensional Simulations of X-Ray Bursts
283(4)
6.4 Superbursts
287(5)
6.5 Exercises
292(3)
7 Core-Collapse Supernovae
295(44)
7.1 SN 1987A
297(2)
7.2 Observations of Core-Collapse Supernovae: Spectra and Light Curves
299(6)
7.2.1 SN II-P
300(2)
7.2.2 SN II-L
302(1)
7.2.3 SN IIb
302(1)
7.2.4 SN IIn
303(1)
7.2.5 Type I Core-Collapses: Supernovae Ib and Ic
303(1)
7.2.6 Cosmology and Type II Supernovae
304(1)
7.3 Core-Collapse Supernovae: Evolution beyond Core Silicon Burning and Explosion
305(7)
7.3.1 Early Models: Prompt Shocks and Neutrino Transport
305(6)
7.3.2 Shock Waves and Explosive Burning Regimes
311(1)
7.4 Nucleosynthesis
312(10)
7.4.1 The s-Process
313(1)
7.4.2 The r-Process: Mergers or Blasts?
314(5)
7.4.3 The p-Process
319(1)
7.4.4 Neutrino-Driven Nucleosynthesis: The ν- and νp-Processes
320(2)
7.5 Observational Constraints
322(8)
7.5.1 γ-Ray Observations
322(4)
7.5.2 Presolar Supernova Grains
326(2)
7.5.2.1 Silicon Carbide Grains of Types X and C
328(1)
7.5.2.2 Graphite Grains
328(1)
7.5.2.3 Nanodiamonds
329(1)
7.5.2.4 Silicon Nitride Grains
329(1)
7.5.2.5 Oxide and Silicate Grains
329(1)
7.6 Supernovae, Neutron Star Mergers, and the Origin of Gamma-Ray Bursts
330(7)
7.7 Exercises
337(2)
Appendix A Henyey Method for Arbitrary Hydrodynamic Problems 339(8)
Appendix B Computer Program for the Free-Fall Collapse Problem 347(14)
Bibliography 361(84)
Index 445
Jordi José is a professor of applied physics and currently the director of the Department of Physics at the Technical University of Catalonia (UPC) in Barcelona. He is also a research associate at the Institute for Space Studies of Catalonia (IEEC). He has been a referee for many research journals and funding agencies (including the U.S. Department of Energy). Dr. José has also been leading a number of international research initiatives, such as the EuroGENESIS program (European Science Foundation). His research focuses on stellar explosions at the crossroads of astrophysics, hydrodynamics, nuclear physics, and cosmochemistry. He is a member of the International Astronomical Union (IAU), the American Physical Society (APS), the Sociedad Espańola de Astronomķa (SEA), and the Societat Catalana de Fķsica, among others.