Atjaunināt sīkdatņu piekrišanu

E-grāmata: Stellar Structure and Evolution

4.28/5 (21 ratings by Goodreads)
  • Formāts: EPUB+DRM
  • Sērija : Astronomy and Astrophysics Library
  • Izdošanas datums: 31-Oct-2012
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642303043
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 94,58 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Astronomy and Astrophysics Library
  • Izdošanas datums: 31-Oct-2012
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642303043
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This long-awaited second edition of the classical textbook on Stellar Structure and Evolution by Kippenhahn and Weigert is a thoroughly revised version of the original text. Taking into account modern observational constraints as well as additional physical effects such as mass loss and diffusion, Achim Weiss and Rudolf Kippenhahn have succeeded in bringing the book up to the state-of-the-art with respect to both the presentation of stellar physics and the presentation and interpretation of current sophisticated stellar models. The well-received and proven pedagogical approach of the first edition has been retained.

The book provides a comprehensive treatment of the physics of the stellar interior and the underlying fundamental processes and parameters. The models developed to explain the stability, dynamics and evolution of the stars are presented and great care is taken to detail the various stages in a star’s life. Just as the first edition, which remained a standard work for more than 20 years after its first publication, the second edition will be of lasting value not only for students but also for active researchers in astronomy and astrophysics.




Thoroughly revised for its 2nd edition, this book presents state-of-the-art coverage of stellar physics, and interprets sophisticated current stellar models. A comprehensive view of the physics of the stellar interior and underlying processes and parameters.

Recenzijas

From the reviews of the second edition:

Stellar Structure and Evolution is a mathematical and theoretical look at stellar physics. As a textbook I found this clear and concise, containing all the important topics and as such is an essential learning material for students of astrophysics, but also a good reference-work to fall back upon if something needs to be reminded. Because of its structure and the way the concepts are presented it also makes for a good textbook for independent study . (Kadri Tinn, AstroMadness.com, March, 2014)

There is an enormous amount of physics and astronomy in this second edition, more than a typical first-year-graduate class, or instructor, can master in a semester. Some of the material cannot easily be found in other books . Certainly, anyone planning to teach the subject should have the book . (Virginia Trimble, The Observatory, Vol. 133 (1233), April, 2013)

Part I The Basic Equations
1 Coordinates, Mass Distribution, and Gravitational Field in Spherical Stars
3(6)
1.1 Eulerian Description
3(1)
1.2 Lagrangian Description
4(2)
1.3 The Gravitational Field
6(3)
2 Conservation of Momentum
9(10)
2.1 Hydrostatic Equilibrium
9(1)
2.2 The Role of Density and Simple Solutions
10(2)
2.3 Simple Estimates of Central Values Pc, Tc
12(1)
2.4 The Equation of Motion for Spherical Symmetry
13(2)
2.5 The Non-spherical Case
15(1)
2.6 Hydrostatic Equilibrium in General Relativity
15(2)
2.7 The Piston Model
17(2)
3 The Virial Theorem
19(6)
3.1 Stars in Hydrostatic Equilibrium
19(2)
3.2 The Virial Theorem of the Piston Model
21(1)
3.3 The Kelvin--Helmholtz Timescale
22(1)
3.4 The Virial Theorem for Non-vanishing Surface Pressure
23(2)
4 Conservation of Energy
25(12)
4.1 Thermodynamic Relations
25(3)
4.2 The Perfect Gas and the Mean Molecular Weight
28(2)
4.3 Thermodynamic Quantities for the Perfect, Monatomic Gas
30(1)
4.4 Energy Conservation in Stars
31(2)
4.5 Global and Local Energy Conservation
33(2)
4.6 Timescales
35(2)
5 Transport of Energy by Radiation and Conduction
37(10)
5.1 Radiative Transport of Energy
37(5)
5.1.1 Basic Estimates
37(1)
5.1.2 Diffusion of Radiative Energy
38(2)
5.1.3 The Rosseland Mean for kv
40(2)
5.2 Conductive Transport of Energy
42(1)
5.3 The Thermal Adjustment Time of a Star
43(2)
5.4 Thermal Properties of the Piston Model
45(2)
6 Stability Against Local, Non-spherical Perturbations
47(14)
6.1 Dynamical Instability
47(5)
6.2 Oscillation of a Displaced Element
52(2)
6.3 Vibrational Stability
54(1)
6.4 The Thermal Adjustment Time
55(1)
6.5 Secular Instability
56(2)
6.6 The Stability of the Piston Model
58(3)
7 Transport of Energy by Convection
61(12)
7.1 The Basic Picture
62(3)
7.2 Dimensionless Equations
65(1)
7.3 Limiting Cases, Solutions, Discussion
66(4)
7.4 Extensions of the Mixing-Length Theory
70(3)
8 The Chemical Composition
73(10)
8.1 Relative Mass Abundances
73(1)
8.2 Variation of Composition with Time
74(9)
8.2.1 Radiative Regions
74(2)
8.2.2 Diffusion
76(4)
8.2.3 Convective Regions
80(3)
9 Mass Loss
83(6)
Part II The Overall Problem
10 The Differential Equations of Stellar Evolution
89(4)
10.1 The Full Set of Equations
89(2)
10.2 Timescales and Simplifications
91(2)
11 Boundary Conditions
93(12)
11.1 Central Conditions
93(2)
11.2 Surface Conditions
95(3)
11.3 Influence of the Surface Conditions and Properties of Envelope Solutions
98(7)
11.3.1 Radiative Envelopes
98(3)
11.3.2 Convective Envelopes
101(1)
11.3.3 Summary
102(1)
11.3.4 The T---r Stratification
102(3)
12 Numerical Procedure
105(18)
12.1 The Shooting Method
105(1)
12.2 The Henyey Method
106(7)
12.3 Treatment of the First- and Second-Order Time Derivatives
113(2)
12.4 Treatment of the Diffusion Equation
115(2)
12.5 Treatment of Mass Loss
117(1)
12.6 Existence and Uniqueness
118(5)
Part III Properties of Stellar Matter
13 The Perfect Gas with Radiation
123(4)
13.1 Radiation Pressure
123(1)
13.2 Thermodynamic Quantities
124(3)
14 Ionization
127(12)
14.1 The Boltzmann and Saha Formulae
127(3)
14.2 Ionization of Hydrogen
130(2)
14.3 Thermodynamical Quantities for a Pure Hydrogen Gas
132(1)
14.4 Hydrogen--Helium Mixtures
133(2)
14.5 The General Case
135(2)
14.6 Limitation of the Saha Formula
137(2)
15 The Degenerate Electron Gas
139(12)
15.1 Consequences of the Pauli Principle
139(1)
15.2 The Completely Degenerate Electron Gas
140(4)
15.3 Limiting Cases
144(1)
15.4 Partial Degeneracy of the Electron Gas
145(6)
16 The Equation of State of Stellar Matter
151(12)
16.1 The Ion Gas
151(1)
16.2 The Equation of State
152(2)
16.3 Thermodynamic Quantities
154(3)
16.4 Crystallization
157(1)
16.5 Neutronization
158(1)
16.6 Real Gas Effects
159(4)
17 Opacity
163(12)
17.1 Electron Scattering
163(1)
17.2 Absorption Due to Free--Free Transitions
164(1)
17.3 Bound--Free Transitions
165(1)
17.4 Bound--Bound Transitions
166(2)
17.5 The Negative Hydrogen Ion
168(1)
17.6 Conduction
169(1)
17.7 Molecular Opacities
170(2)
17.8 Opacity Tables
172(3)
18 Nuclear Energy Production
175(38)
18.1 Basic Considerations
175(4)
18.2 Nuclear Cross Sections
179(3)
18.3 Thermonuclear Reaction Rates
182(6)
18.4 Electron Shielding
188(4)
18.5 The Major Nuclear Burning Stages
192(9)
18.5.1 Hydrogen Burning
193(4)
18.5.2 Helium Burning
197(2)
18.5.3 Carbon Burning and Beyond
199(2)
18.6 Neutron-Capture Nucleosynthesis
201(4)
18.7 Neutrinos
205(8)
Part IV Simple Stellar Models
19 Polytropic Gaseous Spheres
213(20)
19.1 Polytropic Relations
213(2)
19.2 Polytropic Stellar Models
215(1)
19.3 Properties of the Solutions
216(2)
19.4 Application to Stars
218(1)
19.5 Radiation Pressure and the Polytrope n = 3
219(1)
19.6 Polytropic Stellar Models with Fixed K
220(1)
19.7 Chandrasekhar's Limiting Mass
221(1)
19.8 Isothermal Spheres of an Ideal Gas
222(2)
19.9 Gravitational and Total Energy for Polytropes
224(2)
19.10 Supermassive Stars
226(1)
19.11 A Collapsing Polytrope
227(6)
20 Homology Relations
233(10)
20.1 Definitions and Basic Relations
233(4)
20.2 Applications to Simple Material Functions
237(4)
20.2.1 The Case δ = 0
237(1)
20.2.2 The Case α = δ = φ = 1, a = b = 0
237(2)
20.2.3 The Role of the Equation of State
239(2)
20.3 Homologous Contraction
241(2)
21 Simple Models in the U--V Plane
243(8)
21.1 The U--V Plane
243(3)
21.2 Radiative Envelope Solutions
246(2)
21.3 Fitting of a Convective Core
248(2)
21.4 Fitting of an Isothermal Core
250(1)
22 The Zero-Age Main Sequence
251(12)
22.1 Surface Values
251(3)
22.2 Interior Solutions
254(4)
22.3 Convective Regions
258(2)
22.4 Extreme Values of M
260(1)
22.5 The Eddington Luminosity
261(2)
23 Other Main Sequences
263(8)
23.1 The Helium Main Sequence
263(3)
23.2 The Carbon Main Sequence
266(1)
23.3 Generalized Main Sequences
267(4)
24 The Hayashi Line
271(12)
24.1 Luminosity of Fully Convective Models
272(1)
24.2 A Simple Description of the Hayashi Line
273(3)
24.3 The Neighbourhood of the Hayashi Line and the Forbidden Region
276(3)
24.4 Numerical Results
279(2)
24.5 Limitations for Fully Convective Models
281(2)
25 Stability Considerations
283(16)
25.1 General Remarks
283(2)
25.2 Stability of the Piston Model
285(3)
25.2.1 Dynamical Stability
285(1)
25.2.2 Inclusion of Non-adiabatic Effects
286(2)
25.3 Stellar Stability
288(11)
25.3.1 Perturbation Equations
289(1)
25.3.2 Dynamical Stability
290(2)
25.3.3 Non-adiabatic Effects
292(1)
25.3.4 The Gravothermal Specific Heat
293(1)
25.3.5 Secular Stability Behaviour of Nuclear Burning
294(5)
Part V Early Stellar Evolution
26 The Onset of Star Formation
299(12)
26.1 The Jeans Criterion
299(4)
26.1.1 An Infinite Homogeneous Medium
299(3)
26.1.2 A Plane-Parallel Layer in Hydrostatic Equilibrium
302(1)
26.2 Instability in the Spherical Case
303(4)
26.3 Fragmentation
307(4)
27 The Formation of Protostars
311(12)
27.1 Free-Fail Collapse of a Homogeneous Sphere
311(2)
27.2 Collapse onto a Condensed Object
313(1)
27.3 A Collapse Calculation
314(1)
27.4 The Optically Thin Phase and the Formation of a Hydrostatic Core
315(2)
27.5 Core Collapse
317(3)
27.6 Evolution in the Hertzsprung-Russell Diagram
320(3)
28 Pre-Main-Sequence Contraction
323(6)
28.1 Homologous Contraction of a Gaseous Sphere
323(3)
28.2 Approach to the Zero-Age Main Sequence
326(3)
29 From the Initial to the Present Sun
329(14)
29.1 Known Solar Data
329(2)
29.2 Choosing the Initial Model
331(2)
29.3 A Standard Solar Model
333(3)
29.4 Results of Helioseismology
336(2)
29.5 Solar Neutrinos
338(5)
30 Evolution on the Main Sequence
343(24)
30.1 Change in the Hydrogen Content
343(3)
30.2 Evolution in the Hertzsprung-Russell Diagram
346(1)
30.3 Timescales for Central Hydrogen Burning
347(1)
30.4 Complications Connected with Convection
348(8)
30.4.1 Convective Overshooting
349(5)
30.4.2 Semiconvection
354(2)
30.5 The Schonberg-Chandrasekhar Limit
356(11)
30.5.1 A Simple Approach: The Virial Theorem and Homology
358(2)
30.5.2 Integrations for Core and Envelope
360(1)
30.5.3 Complete Solutions for Stars with Isothermal Cores
361(6)
Part VI Post-Main-Sequence Evolution
31 Evolution Through Helium Burning: Intermediate-Mass Stars
367(18)
31.1 Crossing the Hertzsprung Gap
367(4)
31.2 Central Helium Burning
371(4)
31.3 The Cepheid Phase
375(3)
31.4 To Loop or Not to Loop
378(6)
31.5 After Central Helium Burning
384(1)
32 Evolution Through Helium Burning: Massive Stars
385(6)
32.1 Semiconvection
385(2)
32.2 Overshooting
387(2)
32.3 Mass Loss
389(2)
33 Evolution Through Helium Burning: Low-Mass Stars
391(26)
33.1 Post-Main-Sequence Evolution
391(1)
33.2 Shell-Source Homology
392(5)
33.3 Evolution Along the Red Giant Branch
397(4)
33.4 The Helium Flash
401(1)
33.5 Numerical Results for the Helium Flash
402(5)
33.6 Evolution After the Helium Flash
407(3)
33.7 Evolution from the Zero-Age Horizontal Branch
410(7)
Part VII Late Phases of Stellar Evolution
34 Evolution on the Asymptotic Giant Branch
417(22)
34.1 Nuclear Shells on the Asymptotic Giant Branch
417(2)
34.2 Shell Sources and Their Stability
419(3)
34.3 Thermal Pulses of a Shell Source
422(2)
34.4 The Core-Mass-Luminosity Relation for Large Core Masses
424(2)
34.5 Nucleosynthesis on the AGB
426(4)
34.6 Mass Loss on the AGB
430(3)
34.7 A Sample AGB Evolution
433(3)
34.8 Super-AGB Stars
436(2)
34.9 Post-AGB Evolution
438(1)
35 Later Phases of Core Evolution
439(10)
35.1 Nuclear Cycles
439(2)
35.2 Evolution of the Central Region
441(8)
36 Final Explosions and Collapse
449(26)
36.1 The Evolution of the CO-Core
450(4)
36.2 Carbon Ignition in Degenerate Cores
454(7)
36.2.1 The Carbon Flash
454(1)
36.2.2 Nuclear Statistical Equilibrium
455(3)
36.2.3 Hydrostatic and Convective Adjustment
458(1)
36.2.4 Combustion Fronts
459(2)
36.2.5 Carbon Burning in Accreting White Dwarfs
461(1)
36.3 Collapse of Cores of Massive Stars
461(10)
36.3.1 Simple Collapse Solutions
462(3)
36.3.2 The Reflection of the Infall
465(1)
36.3.3 Effects of Neutrinos
466(3)
36.3.4 Electron-Capture Supernovae
469(1)
36.3.5 Pair-Creation Instability
469(2)
36.4 The Supernova-Gamma-Ray-Burst Connection
471(4)
Part VIII Compact Objects
37 White Dwarfs
475(22)
37.1 Chandrasekhar's Theory
475(4)
37.2 The Corrected Mechanical Structure
479(8)
37.2.1 Crystallization
480(2)
37.2.2 Pycnonuclear Reactions
482(1)
37.2.3 Inverse β Decays
483(1)
37.2.4 Nuclear Equilibrium
483(4)
37.3 Thermal Properties and Evolution of White Dwarfs
487(10)
38 Neutron Stars
497(12)
38.1 Cold Matter Beyond Neutron Drip
497(4)
38.2 Models of Neutron Stars
501(8)
39 Black Holes
509(10)
Part IX Pulsating Stars
40 Adiabatic Spherical Pulsations
519(10)
40.1 The Eigenvalue Problem
519(4)
40.2 The Homogeneous Sphere
523(2)
40.3 Pulsating Polytropes
525(4)
41 Non-adiabatic Spherical Pulsations
529(14)
41.1 Vibrational Instability of the Piston Model
529(2)
41.2 The Quasi-adiabatic Approximation
531(1)
41.3 The Energy Integral
532(3)
41.3.1 The κ Mechanism
534(1)
41.3.2 The ε Mechanism
534(1)
41.4 Stars Driven by the κ Mechanism: The Instability Strip
535(6)
41.5 Stars Driven by the ε Mechanism
541(2)
42 Non-radial Stellar Oscillations
543(14)
42.1 Perturbations of the Equilibrium Model
543(2)
42.2 Normal Modes and Dimensionless Variables
545(3)
42.3 The Eigenspectra
548(4)
42.4 Stars Showing Non-radial Oscillations
552(5)
Part X Stellar Rotation
43 The Mechanics of Rotating Stellar Models
557(8)
43.1 Uniformly Rotating Liquid Bodies
557(3)
43.2 The Roche Model
560(2)
43.3 Slowly Rotating Polytropes
562(3)
44 The Thermodynamics of Rotating Stellar Models
565(10)
44.1 Conservative Rotation
565(1)
44.2 Von Zeipel's Theorem
566(1)
44.3 Meridional Circulation
567(2)
44.4 The Non-conservative Case
569(1)
44.5 The Eddington--Sweet Timescale
570(3)
44.6 Meridional Circulation in Inhomogeneous Stars
573(2)
45 The Angular-Velocity Distribution in Stars
575(12)
45.1 Viscosity
575(2)
45.2 Dynamical Stability
577(5)
45.3 Secular Stability
582(5)
References 587(8)
Index 595
Rudolf Kippenhahn is author of very successful academic astronomy books as well of a large number of best-selling popular science books on astronomy, atomic physics and cryptology. From 1965-1975 he was professor for astronomy and astrophysics in Göttingen, Germany, and from 1975-1991 he was the director of the Max-Planck Institute for Astrophysics in Garching. He has received several medals and awards including the Eddington medal by the Royal Astronomical Society and the Karl-Schwarzschild medal of the Astronomische Gesellschaft. Alfred Weigert was professor for astrophysics at the University of Hamburg, Germany. His research forcussed on the simulation of stellar evolution and on the solution of the set of equations describing the structure of stars. He was not only Rudolf Kippenhahns co-author of the first edition of Stellar Structure and Evolution, but also author (with Heinrich J. Wendker) of the successful German introductory textbook Astronomie und Astrophysik. He died in 1992. Achim Weiss is an astrophysicist at the Max-Planck Instiute for Astrophysics in Garching and lecturer at the Ludwig-Maximilians University in Munich, Germany. Dr. Weiss research interests are on stellar evolution of low- and intermediate mass stars, population synthesis and AGB- and post-AGB evolution.