Atjaunināt sīkdatņu piekrišanu

E-grāmata: Stochastic Calculus with Infinitesimals

  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Mathematics 2067
  • Izdošanas datums: 06-Nov-2012
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642331497
  • Formāts - PDF+DRM
  • Cena: 38,06 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Mathematics 2067
  • Izdošanas datums: 06-Nov-2012
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642331497

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Stochastic analysis is not only a thriving area of pure mathematics with intriguing connections to partial differential equations and differential geometry. It also has numerous applications in the natural and social sciences (for instance in financial mathematics or theoretical quantum mechanics) and therefore appears in physics and economics curricula as well. However, existing approaches to stochastic analysis either presuppose various concepts from measure theory and functional analysis or lack full mathematical rigour. This short book proposes to solve the dilemma: By adopting E. Nelson's "radically elementary" theory of continuous-time stochastic processes, it is based on a demonstrably consistent use of infinitesimals and thus permits a radically simplified, yet perfectly rigorous approach to stochastic calculus and its fascinating applications, some of which (notably the Black-Scholes theory of option pricing and the Feynman path integral) are also discussed in the book.
1 Infinitesimal Calculus, Consistently and Accessibly
1(6)
1.1 An Accessible Axiom System for Infinitesimal Calculus: Minimal Internal Set Theory
1(3)
1.2 Finer Classification of the Reals: Finite vs. Limited
4(3)
2 Radically Elementary Probability Theory
7(12)
2.1 Random Variables and Stochastic Processes
7(2)
2.2 Integrability and Limitedness
9(4)
2.3 Wiener Walks and Wiener Processes
13(2)
2.4 Distribution of the Wiener Walk
15(1)
2.5 Integrability and Limited Paths of the Wiener Walk
16(3)
3 Radically Elementary Stochastic Integrals
19(16)
3.1 Martingales and I to Integrals
19(4)
3.2 Radically Elementary I to Processes
23(3)
3.3 A Basic Radically Elementary I to Formula
26(2)
3.4 Analytic Excursion: A Radically Elementary Treatment of Geometric I to Processes with Monotone Drift
28(5)
3.5 The Radically Elementary Version of Levy's Characterization of Wiener Processes
33(2)
4 The Radically Elementary Girsanov Theorem and the Diffusion Invariance Principle
35(10)
4.1 Girsanov's Theorem
35(7)
4.2 The Radically Elementary Diffusion Invariance Principle
42(3)
5 Excursion to Financial Economics: A Radically Elementary Approach to the Fundamental Theorems of Asset Pricing
45(10)
6 Excursion to Financial Engineering: Volatility Invariance in the Black-Scholes Model
55(6)
7 A Radically Elementary Theory of I to Diffusions and Associated Partial Differential Equations
61(10)
7.1 I to Diffusions
61(3)
7.2 The Markov Property of I to Diffusions and the Feynman-Kac Formula
64(7)
8 Excursion to Mathematical Physics: A Radically Elementary Definition of Feynman Path Integrals
71(6)
9 A Radically Elementary Theory of Levy Processes
77(16)
9.1 Random Walks and Levy Walks
77(3)
9.2 Integrability of Levy Walks with Limited Increments
80(2)
9.3 Lindstrøm's Characterization of Levy Walks
82(4)
9.4 A Radically Elementary Ito-Doeblin Formula for Levy Walks with Limited-Variation Jump Part
86(4)
9.5 A Brief Look at Levy Finance
90(3)
10 Final Remarks
93(2)
A Excursion to Logic: Some Remarks on the Metamathematics of Minimal Internal Set Theory
95(8)
A.1 An Alternative Road to Minimal Internal Set Theory
95(2)
A.2 A Simple Relative Consistency Proof for a Substantial Subsystem of minIST
97(4)
A.3 Definable Models for (Minimal) Nonstandard Analysis
101(2)
B Robinsonian vs. Minimal Nonstandard Analysis
103(4)
References 107(4)
Index 111