Atjaunināt sīkdatņu piekrišanu

E-grāmata: Stochastic Integration Theory

(Budapest University of Economic Sciences)
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 120,54 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This graduate level text covers the theory of stochastic integration, an important area of mathematics that has a wide range of applications, including financial mathematics and signal processing. Aimed at graduate students in mathematics, statistics, probability, mathematical finance, and economics, the book not only covers the theory of the stochastic integral in great depth but also presents the associated theory (martingales, Levy processes) and important examples (Brownian motion, Poisson process).
Preface xiii
Stochastic processes
1(107)
Random functions
1(6)
Trajectories of stochastic processes
2(1)
Jumps of stochastic processes
3(3)
When are stochastic processes equal?
6(1)
Measurability of Stochastic Processes
7(22)
Filtration, adapted, and progressively measurable processes
8(5)
Stopping times
13(6)
Stopped variables, σ-algebras, and truncated processes
19(4)
Predictable processes
23(6)
Martingales
29(63)
Doob's inequalities
30(5)
The energy equality
35(2)
The quadratic variation of discrete time martingales
37(5)
The downcrossings inequality
42(4)
Regularization of martingales
46(3)
The Optional Sampling Theorem
49(9)
Application: elementary properties of Levy processes
58(22)
Application: the first passage times of the Wiener processes
80(11)
Some remarks on the usual assumptions
91(1)
Localization
92(16)
Stability under truncation
93(1)
Local martingales
94(10)
Convergence of local martingales: uniform convergence on compacts in probability
104(2)
Locally bounded processes
106(2)
Stochastic Integration with Locally Square-Integrable Martingales
108(71)
The Ito--Stieltjes Integrals
109(29)
Ito--Stieltjes integrals when the integrators have finite variation
111(6)
Ito--Stieltjes integrals when the integrators are locally square-integrable martingales
117(7)
Ito--Stieltjes integrals when the integrators are semimartingales
124(2)
Properties of the Ito--Stieltjes integral
126(1)
The integral process
126(2)
Integration by parts and the existence of the quadratic variation
128(6)
The Kunita--Watanabe inequality
134(4)
The Quadratic Variation of Continuous Local Martingales
138(8)
Integration when Integrators are Continuous Semimartingales
146(21)
The space of square-integrable continuous local martingales
147(4)
Integration with respect to continuous local martingales
151(11)
Integration with respect to semimartingales
162(1)
The Dominated Convergence Theorem for stochastic integrals
162(2)
Stochastic integration and the Ito--Stieltjes integral
164(3)
Integration when Integrators are Locally Square-Integrable Martingales
167(12)
The quadratic variation of locally square-integrable martingales
167(4)
Integration when the integrators are locally square-integrable martingales
171(5)
Stochastic integration when the integrators are semimartingales
176(3)
The Structure of Local Martingales
179(46)
Predictable Projection
182(25)
Predictable stopping times
182(6)
Decomposition of thin sets
188(2)
The extended conditional expectation
190(2)
Definition of the predictable projection
192(2)
The uniqueness of the predictable projection, the predictable section theorem
194(7)
Properties of the predictable projection
201(3)
Predictable projection of local martingales
204(2)
Existence of the predictable projection
206(1)
Predictable Compensators
207(12)
Predictable Radon--Nikodym Theorem
207(6)
Predictable Compensator of locally integrable processes
213(4)
Properties of the Predictable Compensator
217(2)
The Fundamental Theorem of Local Martingales
219(3)
Quadratic Variation
222(3)
General Theory of Stochastic Integration
225(67)
Purely Discontinuous Local Martingales
225(10)
Orthogonality of local martingales
227(5)
Decomposition of local martingales
232(2)
Decomposition of semimartingales
234(1)
Purely Discontinuous Local Martingales and Compensated Jumps
235(11)
Construction of purely discontinuous local martingales
240(4)
Quadratic variation of purely discontinuous local martingales
244(2)
Stochastic Integration With Respect To Local Martingales
246(8)
Definition of stochastic integration
248(2)
Properties of stochastic integration
250(4)
Stochastic Integration With Respect To Semimartingales
254(23)
Integration with respect to special semimartingales
257(4)
Linearity of the stochastic integral
261(1)
The associativity rule
262(2)
Change of measure
264(13)
The Proof of Davis' Inequality
277(15)
Discrete-time Davis' inequality
279(8)
Burkholder's inequality
287(5)
Some Other Theorems
292(59)
The Doob--Meyer Decomposition
292(16)
The proof of the theorem
292(7)
Dellacherie's formulas and the natural processes
299(4)
The sub- super- and the quasi-martingales are semimartingales
303(5)
Semimartingales as Good Integrators
308(6)
Integration of Adapted Product Measurable Processes
314(5)
Theorem of Fubini for Stochastic Integrals
319(9)
Martingale Representation
328(23)
Ito's Formula
351(109)
Ito's Formula for Continuous Semimartingales
353(6)
Some Applications of the Formula
359(18)
Zeros of Wiener processes
359(7)
Continuous Levy processes
366(2)
Levy's characterization of Wiener processes
368(5)
Integral representation theorems for Wiener processes
373(2)
Bessel processes
375(2)
Change of Measure for Continuous Semimartingales
377(17)
Locally absolutely continuous change of measure
377(1)
Semimartingales and change of measure
378(2)
Change of measure for continuous semimartingales
380(2)
Girsanov's formula for Wiener processes
382(4)
Kazamaki--Novikov criteria
386(8)
Ito's Formula for Non-Continuous Semimartingales
394(23)
Ito's formula for processes with finite variation
398(3)
The proof of Ito's formula
401(10)
Exponential semimartingales
411(6)
Ito's Formula For Convex Functions
417(43)
Derivative of convex functions
418(4)
Definition of local times
422(7)
Meyer--Ito formula
429(9)
Local times of continuous semimartingales
438(7)
Local time of Wiener processes
445(5)
Ray--Knight theorem
450(7)
Theorem of Dvoretzky Erdos and Kakutani
457(3)
Processes with Independent Increments
460(87)
Levy processes
460(36)
Poisson processes
461(3)
Compound Poisson processes generated by the jumps
464(8)
Spectral measure of Levy processes
472(8)
Decomposition of Levy processes
480(6)
Levy--Khintchine formula for Levy processes
486(3)
Construction of Levy processes
489(2)
Uniqueness of the representation
491(5)
Predictable Compensators of Random Measures
496(12)
Measurable random measures
497(4)
Existence of predictable compensator
501(7)
Characteristics of Semimartingales
508(5)
Levy--Khintchine Formula for Semimartingales with Independent Increments
513(25)
Examples: probability of jumps of processes with independent increments
513(5)
Predictable cumulants
518(5)
Semimartingales with independent increments
523(7)
Characteristics of semimartingales with independent increments
530(4)
The proof of the formula
534(4)
Decomposition of Processes with Independent Increments
538(9)
Appendix
547(47)
Results from Measure Theory
547(12)
The Monotone Class Theorem
547(3)
Projection and the Measurable Selection Theorems
550(1)
Cramer's Theorem
551(4)
Interpretation of Stopped σ-algebras
555(4)
Wiener Processes
559(20)
Basic Properties
559(8)
Existence of Wiener Processes
567(4)
Quadratic Variation of Wiener Processes
571(8)
Poisson processes
579(15)
Notes and Comments 594(3)
References 597(6)
Index 603