Atjaunināt sīkdatņu piekrišanu

E-grāmata: Stochastic Modeling: A Thorough Guide to Evaluate, Pre-Process, Model and Compare Time Series with MATLAB Software

(Ph.D. candidate in the field of Soil and Environments, Department of Soils and AgriFood Engineering, Laval University, Québec, Canada), (Associate Professor, Department of Civil Engineering, University of Ottawa, Ontario, Canada)
  • Formāts: EPUB+DRM
  • Izdošanas datums: 13-Apr-2022
  • Izdevniecība: Elsevier - Health Sciences Division
  • Valoda: eng
  • ISBN-13: 9780323972758
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 151,21 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Izdošanas datums: 13-Apr-2022
  • Izdevniecība: Elsevier - Health Sciences Division
  • Valoda: eng
  • ISBN-13: 9780323972758
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Stochastic Modeling: A Thorough Guide to Evaluate, Pre-Process, Model and Compare Time Series with MATLAB Software allows for new avenues in time series analysis and predictive modeling which summarize more than ten years of experience in the application of stochastic models in environmental problems. The book introduces a variety of different topics in time series in the modeling and prediction of complex environmental systems. Most importantly, all codes are user-friendly and readers will be able to use them for their cases. Users who may not be familiar with MATLAB software can also refer to the appendix.

This book also guides the reader step-by-step to learn developed codes for time series modeling, provides required toolboxes, explains concepts, and applies different tools for different types of environmental time series problems.

  • Provides video tutorials on the use of codes
  • Includes a companion site with 3,000 lines of programming, 70 principal codes and 100 pseudo codes
  • Highlights multiple methods to Illustrate each problem
1. Introduction
2. Preparation and Stationarizing
3. Distribution evaluation and Normalization
4. Stochastic Modeling
5. Goodness-Of-Fit and Precision Criteria
Appendix
MATLAB introduction and basic commands
Introduction
How to execute commands in MATLAB: Frequently used commands
Using MATLABs help
Dr. Hossein Bonakdari is a distinguished professor in the Department of Civil Engineering at the University of Ottawa, specializing in mathematical modeling and artificial intelligence (AI). A leading expert in AI-driven data analysis, he has pioneered advanced algorithms for real-time forecasting and big data interpretation, significantly improving the understanding and management of environmental systems.

Dr. Bonakdari has authored four books, published over 320 peer-reviewed journal articles, contributed to more than 20 book chapters, and delivered over 100 presentations at national and international conferences. As a respected editorial board member of several leading journals, he continues to shape research in his field. His groundbreaking contributions have earned him global recognition, ranking him among the top 2% of the world's scientists from 2019 to 2024.

Mohammad Zeynoddin is currently Ph.D. candidate in the field of Soil and Environments at Department of Soils and AgriFood Engineering, Laval University, Québec, Canada. He holds Master of Water Engineering and Hydraulic Structure and Bachelor of Civil Engineering diploma.

His research has primarily been focused on time series modeling to improve the accuracy of calculations of hydrological variables for monitoring, real time prediction, optimization, and automation of hydrological and environmental systems. Results of his research was 12 published papers in international journals with high Impact Factors. He received several awards and honors from universities during of his Master and PhD studies. He has a passion for art and sports. He holds several international sport certificates and championships.