Preface |
|
vii | |
About the Author |
|
ix | |
|
|
1 | (10) |
|
|
11 | (58) |
|
2.1 Representation of Integers |
|
|
11 | (1) |
|
2.2 Curious Patterns in Numbers |
|
|
12 | (6) |
|
|
13 | (1) |
|
2.2.2 Combination of multiplication and addition |
|
|
13 | (1) |
|
2.2.3 Consecutive integers |
|
|
14 | (2) |
|
|
16 | (2) |
|
|
18 | (4) |
|
2.3.1 Number of even, odd and total digits |
|
|
18 | (1) |
|
2.3.2 Sum of squares of the digits |
|
|
18 | (1) |
|
2.3.3 Sum of cubes of the digits |
|
|
19 | (1) |
|
2.3.4 A fixed point at 1089 |
|
|
20 | (1) |
|
|
20 | (1) |
|
2.3.6 Collatz conjecture (hailstone numbers) |
|
|
21 | (1) |
|
|
22 | (16) |
|
|
24 | (1) |
|
|
24 | (2) |
|
2.4.3 Double Mersenne primes |
|
|
26 | (1) |
|
|
26 | (2) |
|
|
28 | (1) |
|
2.4.6 Sophie Germain primes |
|
|
28 | (1) |
|
|
29 | (1) |
|
|
30 | (1) |
|
|
30 | (1) |
|
|
30 | (2) |
|
2.4.11 Carmichael numbers |
|
|
32 | (1) |
|
|
33 | (1) |
|
|
33 | (1) |
|
2.4.14 Prime digit/composite digit primes |
|
|
34 | (1) |
|
2.4.15 Almost-all-even-digits primes |
|
|
34 | (1) |
|
2.4.16 Palindromic and plateau primes |
|
|
34 | (1) |
|
|
35 | (1) |
|
2.4.18 Russian Doll primes |
|
|
35 | (1) |
|
|
35 | (1) |
|
2.4.20 Very large prime numbers with repeated pattern |
|
|
35 | (1) |
|
|
36 | (2) |
|
|
38 | (6) |
|
2.5.1 Highly composite numbers |
|
|
38 | (1) |
|
2.5.2 Sierpinski's numbers |
|
|
39 | (1) |
|
2.5.3 Perfect and associated numbers |
|
|
40 | (2) |
|
2.5.4 Friendly (Amicable) numbers |
|
|
42 | (1) |
|
|
43 | (1) |
|
2.5.6 Untouchable numbers |
|
|
43 | (1) |
|
|
43 | (1) |
|
|
44 | (6) |
|
2.6.1 Fibonacci (Hemachandra) sequence |
|
|
44 | (3) |
|
|
47 | (1) |
|
|
48 | (1) |
|
2.6.4 Look-and-say sequence |
|
|
49 | (1) |
|
2.7 Pythagorean Triples (Triplets) |
|
|
50 | (2) |
|
2.8 Taxicab and Similar Numbers |
|
|
52 | (4) |
|
|
52 | (3) |
|
2.8.2 Numbers refuting Euler's conjecture |
|
|
55 | (1) |
|
2.9 Narcissistic and Similar Numbers |
|
|
56 | (3) |
|
2.9.1 Narcissistic numbers |
|
|
56 | (1) |
|
2.9.2 Factorians and factorial loops |
|
|
57 | (1) |
|
|
58 | (1) |
|
2.9.4 SP and S + P numbers |
|
|
59 | (1) |
|
2.10 Some Unassuming Integers |
|
|
59 | (3) |
|
|
59 | (1) |
|
|
60 | (1) |
|
2.10.3 Integers 9, 23, 239 |
|
|
60 | (1) |
|
2.10.4 Integers 24 and 70 |
|
|
60 | (1) |
|
|
61 | (1) |
|
|
61 | (1) |
|
|
62 | (7) |
|
2.11.1 Ogha, Mahaugha, googol and googolplex |
|
|
63 | (1) |
|
2.11.2 Measurable infinity |
|
|
64 | (1) |
|
2.11.3 Colour combinations of a Rubik cube |
|
|
64 | (1) |
|
2.11.4 Archimedes cattle problem |
|
|
65 | (1) |
|
|
65 | (1) |
|
2.11.6 Moser number and Graham number |
|
|
66 | (3) |
|
|
69 | (46) |
|
|
69 | (1) |
|
|
70 | (1) |
|
3.3 Transcendental Numbers |
|
|
71 | (2) |
|
3.4 Decimal Representation |
|
|
73 | (2) |
|
3.5 Continued Fraction Representation |
|
|
75 | (3) |
|
|
78 | (9) |
|
3.6.1 Square root --- Babylonian |
|
|
81 | (1) |
|
3.6.2 Square root --- Indian |
|
|
82 | (1) |
|
|
83 | (1) |
|
3.6.4 Logistic map and Feigenbaum numbers |
|
|
84 | (3) |
|
3.7 Special Rational Numbers |
|
|
87 | (6) |
|
3.7.1 Unique Egyptian fractions with sum unity |
|
|
87 | (1) |
|
3.7.2 A Steinhaus problem |
|
|
87 | (1) |
|
|
88 | (1) |
|
|
89 | (1) |
|
|
90 | (2) |
|
3.7.6 Curious periodic patterns |
|
|
92 | (1) |
|
3.8 Special Irrational and Transcendental Numbers |
|
|
93 | (22) |
|
3.8.1 Pythagoras's number: √2 |
|
|
94 | (1) |
|
|
94 | (3) |
|
|
97 | (1) |
|
3.8.4 Schizophrenic numbers |
|
|
98 | (1) |
|
3.8.5 Oldest universal mathematical constant π |
|
|
99 | (4) |
|
3.8.6 Base of natural logarithm e |
|
|
103 | (5) |
|
3.8.7 Famous formulas having both π and e |
|
|
108 | (3) |
|
|
111 | (1) |
|
|
112 | (2) |
|
3.8.10 Liouville's number |
|
|
114 | (1) |
|
3.8.11 Champernowne's number |
|
|
114 | (1) |
|
|
114 | (1) |
|
4 Imaginary and Complex Numbers |
|
|
115 | (28) |
|
4.1 A Brief Early History of √--1 |
|
|
117 | (2) |
|
4.2 Geometric Representation of Complex Numbers |
|
|
119 | (2) |
|
4.3 Euler's Fabulous Formula |
|
|
121 | (2) |
|
4.4 Complex Exponentiation and Special Numbers |
|
|
123 | (2) |
|
4.5 Fundamental Theorem of Algebra |
|
|
125 | (1) |
|
4.6 Gaussian Integers and Gaussian Primes |
|
|
126 | (3) |
|
|
129 | (5) |
|
|
134 | (9) |
|
|
143 | (18) |
|
|
143 | (3) |
|
|
146 | (3) |
|
|
149 | (3) |
|
|
149 | (1) |
|
|
150 | (1) |
|
5.3.3 Dual angle and trigonometry |
|
|
150 | (1) |
|
|
151 | (1) |
|
|
152 | (9) |
|
5.4.1 Decimal representation of real numbers and 10-adic numbers |
|
|
153 | (1) |
|
|
154 | (7) |
|
|
161 | (4) |
|
A.1 Solution of Equation (1.2) |
|
|
161 | (1) |
|
A.2 Brahmagupta's Equation and Its Solution |
|
|
161 | (3) |
|
A.3 Solution to Equation (2.26) |
|
|
164 | (1) |
|
|
165 | (4) |
|
B.1 Sum of Integral Powers of Natural Numbers |
|
|
165 | (4) |
|
|
169 | (2) |
|
C.1 Origin of Curious Patterns (Section 3.7.6) |
|
|
169 | (2) |
References |
|
171 | (4) |
Index |
|
175 | |