Atjaunināt sīkdatņu piekrišanu

E-grāmata: Strategies to the Prediction, Mitigation and Management of Product Obsolescence

(TQ Systems GmbH), (University of Maryland, MD), (University of Maryland, College Park),
  • Formāts - EPUB+DRM
  • Cena: 135,57 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

"Supply chains for electronic products are primarily driven by consumer electronics. Every year new mobile phones, computers and gaming consoles are introduced, driving the continued applicability of Moore's law. The semiconductor manufacturing industry is highly dynamic and releases new, better and cheaper products day by day. But what happens to long-field life products like airplanes or ships, which need the same components for decades? How do electronic and also non-electronic systems that need to bemanufactured and supported of decades manage to continue operation using parts that were available for a few years at most? This book attempts to answer these questions.This is the only book on the market that covers obsolescence forecasting methodologies, including forecasting tactics for hardware and software that enable cost-effective proactive product life-cycle management. This book describes how to implement a comprehensive obsolescence management system within diverse companies. Strategies to the Prediction, Mitigation and Management of Product Obsolescence is a must-have work for all professionals in product/project management, sustainment engineering and purchasing"--



Supply chains for electronic products are primarily driven by consumer electronics. Every year new mobile phones, computers and gaming consoles are introduced, driving the continued applicability of Moore's law. The semiconductor manufacturing industry is highly dynamic and releases new, better and cheaper products day by day. But what happens to long-field life products like airplanes or ships, which need the same components for decades? How do electronic and also non-electronic systems that need to be manufactured and supported of decades manage to continue operation using parts that were available for a few years at most? This book attempts to answer these questions.

This is the only book on the market that covers obsolescence forecasting methodologies, including forecasting tactics for hardware and software that enable cost-effective proactive product life-cycle management. This book describes how to implement a comprehensive obsolescence management system within diverse companies. Strategies to the Prediction, Mitigation and Management of Product Obsolescence is a must-have work for all professionals in product/project management, sustainment engineering and purchasing.

Preface xiii
1 Introduction to Obsolescence Problems
1(16)
1.1 Definition of Obsolescence
1(2)
1.2 Categorization of Obsolescence Types
3(1)
1.3 Definition of Obsolescence Management
4(1)
1.4 Categorization of Obsolescence Management Approaches
5(1)
1.5 Historical Perspective on Obsolescence
6(2)
1.6 Occurrence of Obsolescence
8(3)
1.6.1 Technological Evolution
8(1)
1.6.2 Technological Revolutions
8(1)
1.6.3 Market Forces
8(1)
1.6.4 Environmental Policies and Restrictions
8(1)
1.6.5 Allocation
9(2)
1.6.6 Planned Obsolescence
11(1)
1.7 Product Sectors Affected by Obsolescence Problems
11(2)
1.8 Parts Affected by Obsolescence Problems
13(4)
1.8.1 Electronic Part Obsolescence
13(2)
1.8.2 Software Obsolescence
15(1)
1.8.3 Textile and Mechanical Part Obsolescence
16(1)
2 Part Change and Discontinuation Management
17(16)
2.1 The Change Process
18(1)
2.2 Change-Control Policies of Major Part Manufacturers
18(1)
2.3 Change-Notification Policies of Major Companies
19(5)
2.3.1 Differences by Manufacturer
19(2)
2.3.2 Differences by Division or Manufacturing Location
21(1)
2.3.3 Differences by Customer Type
22(1)
2.3.4 Differences by Geographical Location
22(1)
2.3.5 Distributors
23(1)
2.3.6 Contract Manufacturers
23(1)
2.4 Change-Notification
24(3)
2.4.1 Industry Standard Process Change-Notification
24(1)
2.4.1.1 Electronic Industries Alliance
25(2)
2.4.1.2 U.S. Military
27(1)
2.5 Change-Notification Paths
27(2)
2.5.1 Direct to Equipment Manufacturers
28(1)
2.5.2 Via Distributors
28(1)
2.5.3 Via Contract Manufacturers
29(1)
2.5.4 Via Independent Services
29(1)
2.6 Examples of Common Changes
29(4)
2.6.1 Fabrication Changes
30(1)
2.6.2 Die Revisions
30(1)
2.6.3 Changes to Assembly/Test Locations
31(1)
2.6.4 Changes to Assembly Materials
31(1)
2.6.5 Packing, Marking, and Shipping Changes
32(1)
3 Introduction to Electronic Part Product Life Cycles
33(8)
3.1 Product Life Cycle Stages
34(5)
3.1.1 Introduction Stage
36(1)
3.1.2 Growth Stage
36(2)
3.1.3 Maturity Stage
38(1)
3.1.4 Decline Stage
38(1)
3.1.5 Phase-Out Stage
38(1)
3.1.6 Discontinuance and Obsolescence
39(1)
3.2 Special Cases of the Product Life Cycle Curve
39(1)
3.3 Product Life Cycle Stages as a Basis for Forecasting
40(1)
4 Obsolescence Forecasting Methodologies
41(36)
4.1 Obsolescence Forecasting-Parts with Evolutionary Parametric Drivers
42(14)
4.1.1 Basic Life Cycle Curve Forecasting Method
42(1)
4.1.1.1 Step 1: Identify Part/Technology Group
42(2)
4.1.1.2 Step 2: Identify the Part's Primary and Secondary Attributes
44(2)
4.1.1.3 Step 3: Obtain Sales Data Associated with the Primary Attribute
46(1)
4.1.1.4 Step 4: Construct the Life Cycle Curve and Determine Parameters
46(1)
4.1.1.5 Step 5: Determine the Zone of Obsolescence
47(1)
4.1.1.6 Step 6: Modify the Zone of Obsolescence
48(2)
4.1.1.7 Summary
50(1)
4.1.2 Advanced Life Cycle Curve Method
51(1)
4.1.2.1 Determining the Window of Obsolescence via Data Mining
52(2)
4.1.2.2 Application of Data Mining Determined Windows of Obsolescence to Memory Modules
54(2)
4.2 Obsolescence Forecasting-Parts without Evolutionary Parametric Drivers
56(14)
4.2.1 Procurement Lifetime
56(1)
4.2.2 Electronic Part Introduction Date and Obsolescence Date Data
57(1)
4.2.3 Determining Mean Procurement Lifetimes
58(5)
4.2.4 An Interpretation of Procurement Lifetime and Worst-Case Forecasts
63(3)
4.2.5 Part Type Specific Results
66(3)
4.2.6 Discussion and Conclusions
69(1)
4.3 Non-Database Obsolescence Forecasting Methodology
70(7)
4.3.1 Forecasting Process
70(1)
4.3.2 Step 1: Identify Part/Technology Group
70(1)
4.3.3 Step 2: Obtain Forecasting Data
71(2)
4.3.4 Step 3: Estimated EOL Date and Risk of Obsolescence
73(2)
4.3.5 ERP System Modification
75(1)
4.3.6 Discussion and Conclusion
76(1)
5 Case Study Hardware Forecasts and Trends
77(66)
5.1 Dynamic RAMs (DRAMs)
77(7)
5.1.1 Types of DRAMs
78(1)
5.1.2 Market and Technology Trends
78(3)
5.1.3 Application of the Forecasting Methodology
81(2)
5.1.4 Discussion of DRAM Forecasts
83(1)
5.2 Static Random Access Memories (SRAMs)
84(10)
5.2.1 Types of SRAMs
85(1)
5.2.2 The SRAM Market
86(2)
5.2.3 Application of the Forecasting Methodology
88(3)
5.2.4 Discussion of SRAM Forecasts
91(3)
5.3 Non-Volatile Memories
94(11)
5.3.1 Types of Non-Volatile Memories
95(1)
5.3.1.1 EEPROM
95(1)
5.3.1.2 Flash Memory
96(1)
5.3.2 The Non-Volatile Memory Market
97(1)
5.3.3 Application of the Life Cycle Forecasting Methodology
98(3)
5.3.4 Determining the Zone of Obsolescence
101(2)
5.3.5 Discussion of Non-Volatile Memory Forecasts
103(2)
5.4 Microprocessors
105(10)
5.4.1 Types of Microprocessors
107(1)
5.4.2 The Microprocessor Market
107(1)
5.4.3 Application of Forecasting Methodology
108(5)
5.4.4 Determining the Zone of Obsolescence
113(1)
5.4.5 Discussion of Microprocessor Forecasts
113(2)
5.5 Microcontrollers and Digital Signal Processors (DSPs)
115(5)
5.5.1 Type of Microcontrollers
115(1)
5.5.1.1 Embedded Microcontrollers
116(1)
5.5.1.2 External Memory Microcontrollers
116(1)
5.5.2 The Microcontroller Market
116(2)
5.5.3 Overview of Digital Signal Processors
118(1)
5.5.4 Application of the Life Cycle Forecasting Methodology
118(1)
5.5.5 Determining the Zone of Obsolescence
119(1)
5.5.6 Discussion of Microcontroller and DSP Forecasts
120(1)
5.6 Logic Parts
120(9)
5.6.1 Types of Logic Parts
120(6)
5.6.2 The Logic Part Market
126(1)
5.6.3 Application of Forecasting Methodology
126(2)
5.6.4 Discussion of Logic Part Forecasts
128(1)
5.7 Analog Parts
129(7)
5.7.1 Types of Analog Parts
130(1)
5.7.2 The Analog Part Market
130(1)
5.7.3 Application of Forecasting Methodology
131(2)
5.7.4 Determining the Zone of Obsolescence
133(2)
5.7.5 Discussion of Analog Forecasts
135(1)
5.8 Application-Specific Integrated Circuits (ASICs)
136(7)
5.8.1 Types of ASICs
136(1)
5.8.1.1 Full-Custom ASICs
137(1)
5.8.1.2 Semi-Custom ASICs
137(1)
5.8.1.3 Programmable Logic Devices
138(1)
5.8.2 The ASIC Market
139(1)
5.8.3 Application of Life Cycle Forecasting Methodology
139(1)
5.8.4 Discussion of ASIC Forecasts
140(3)
6 Software Obsolescence
143(14)
6.1 The Root Causes of Software Obsolescence
145(1)
6.2 Software Obsolescence Mechanisms
146(9)
6.2.1 Software Purchasing Obsolescence Mechanism
148(1)
6.2.2 Software Support Obsolescence Mechanism
149(2)
6.2.3 Software Compatibility Obsolescence Mechanism
151(2)
6.2.4 Software Infrastructure Obsolescence Mechanism
153(1)
6.2.5 Software Distribution Obsolescence Mechanism
154(1)
6.3 Discussion
155(2)
7 Reactive Obsolescence Management
157(36)
7.1 Change and Discontinuance Notifications
158(2)
7.2 Obsolescence Recovery (Mitigation) Tactics
160(26)
7.2.1 Negotiating with the Manufacturer
162(1)
7.2.2 Existing Stock
162(1)
7.2.3 Reclamation
163(1)
7.2.4 Alternate Parts
163(1)
7.2.5 Part Substitution
164(2)
7.2.6 Uprating
166(2)
7.2.7 Aftermarket Sources
168(6)
7.2.8 Emulation
174(3)
7.2.9 Redesign
177(3)
7.2.10 Reverse-Engineering
180(1)
7.2.11 Lifetime Buys/Bridge Buys
181(5)
7.3 Selecting the Proper Reactive Obsolescence Management Strategy
186(2)
7.3.1 Part Discontinuance Status
186(1)
7.3.2 Degree of Life Cycle Mismatch
186(1)
7.3.3 Number of Products Using the Obsolete Part
186(1)
7.3.4 Volume Requirement
187(1)
7.3.5 Product Support
187(1)
7.3.6 Number of Obsolete Parts in a System
187(1)
7.3.7 Future Market
187(1)
7.3.8 Turnaround Time Available for Resolution
188(1)
7.3.9 Requalification Requirements
188(1)
7.4 Reactive Obsolescence Management Checklist
188(1)
7.5 Reactive Obsolescence Management Guideline
188(5)
8 Proactive Obsolescence Management
193(6)
8.1 Members of the Proactive Obsolescence Management Board
194(1)
8.2 Schedule and Milestones
194(1)
8.3 Initial Obsolescence Risk Analysis
195(2)
8.3.1 BOM Management
195(1)
8.3.2 Material Risk Index
196(1)
8.3.3 Health Monitoring
196(1)
8.4 Tracking Parts' Availability
197(1)
8.5 Product Obsolescence and Aftersales
197(2)
9 Strategic Obsolescence Management
199(34)
9.1 Applying Project Management Principles to Obsolescence Management
200(2)
9.2 Initiation Stage
202(3)
9.2.1 Auditing
202(2)
9.2.2 Raising Awareness
204(1)
9.3 Planning and Design Stage
205(5)
9.3.1 Design Products to Avoid Obsolescence
205(1)
9.3.2 Process Analyses
206(1)
9.3.2.1 Ishikawa/Fishbone Diagram
206(1)
9.3.2.2 Fault Tree Analysis (FTA)
206(2)
9.3.2.3 Failure Modes and Effects Analysis (FMEA)
208(2)
9.4 Execution Stage
210(15)
9.4.1 Forecasting the Product Life Cycle
210(1)
9.4.2 Parts Selection Process
210(2)
9.4.3 Demand Specification
212(1)
9.4.4 Supplier Management
213(1)
9.4.5 Contractual Language
214(2)
9.4.6 Special Obsolescence Management Capabilities
216(1)
9.4.7 Streamlining Regulatory Procedures
216(1)
9.4.8 Management above the Piece-Part Level
217(1)
9.4.9 Design Refresh Planning Optimization
217(1)
9.4.9.1 Porter Model for Refresh Planning
218(2)
9.4.9.2 The MOCA Refresh Planning Model
220(2)
9.4.9.3 Material Risk Index (MRI) Model
222(1)
9.4.10 Open Systems
223(1)
9.4.11 Hardware-Software Independence
224(1)
9.4.12 Responsibilities of Customers and End Users
224(1)
9.5 Monitoring and Controlling Stage
225(4)
9.5.1 Economics of Obsolescence Management Strategies
225(2)
9.5.2 Cost Variations at the Part or Component Level
227(1)
9.5.3 Cost Variations at the System or Module Level
227(1)
9.5.4 Cost Variations due to Economic Policy Factors
228(1)
9.5.5 Cost-Benefit Analysis
228(1)
9.6 Strategic Obsolescence Management Guidelines
229(4)
10 Obsolescence Management Standards and Organizations
233(12)
10.1 Helpful Standards for Obsolescence Management
233(4)
10.1.1 Defense Standardization Program Office (SD-22)
234(1)
10.1.2 Electronic Industries Alliance (EIA)
234(1)
10.1.3 Joint Electron Device Engineering Council (JEDEC)
235(1)
10.1.4 International Electrotechnical Commission (IEC)
235(1)
10.1.5 DIN Deutsches Institut fur Normung e.V.
236(1)
10.1.6 British Standards Institution (BSI)
236(1)
10.1.7 STACK International
236(1)
10.1.8 Electronics Industry Quality Conference (EIQC)
236(1)
10.1.9 Airlines Electronic Engineering Committee (AEEC)
237(1)
10.1.10 VMEbus International Trade Association (VITA)
237(1)
10.2 Helpful Organizations for Obsolescence Management
237(8)
10.2.1 U.S. Department of Defense (DoD)
237(3)
10.2.2 Government Industry Data Exchange Program (GIDEP)
240(1)
10.2.3 Defense Logistics Agency (DLA)
240(1)
10.2.4 Defense Microelectronics Activity (DMEA)
240(1)
10.2.5 UK Ministry of Defence (UK MoD)
241(1)
10.2.6 Component Obsolescence Group (COG)
242(1)
10.2.7 University of Maryland---CALCE
243(1)
10.2.8 Federal Aviation Administration (FAA)
243(2)
References 245(22)
Index 267
Bjoern Bartels is a senior consultant and obsolescence management competence lead with a masters degree in international business and a German diploma in industrial engineering and business management. Ulrich Ermel is Head of Department Materials and Obsolescence Management at TQ Systems GmbH and Chairman of the Component Obsolescence Group in Germany.

Peter Sandborn, PhD, is Professor of Mechanical Engineering in the CALCE Electronic Products and Systems Center at the University of Maryland.

Michael G. Pecht, PhD, is Chair Professor of Mechanical Engineering and Director of the Center for Advanced Life Cycle Engineering (CALCE) at the University of Maryland. He is also a visiting Professor in Electronics Engineering at City University in Hong Kong.