Preface |
|
xiii | |
Authors |
|
xix | |
|
|
xxi | |
|
|
xxix | |
|
|
xxxi | |
Abbreviations |
|
xxxiii | |
Greek Alphabet |
|
xxxvii | |
|
I Preliminaries and Basic Methods |
|
|
1 | (186) |
|
1 Framing Structural Equation Modelling |
|
|
3 | (12) |
|
1.1 What Is Structural Equation Modelling? |
|
|
3 | (3) |
|
1.2 Two Approaches to Estimating SEM Models |
|
|
6 | (4) |
|
1.2.1 Covariance-based SEM |
|
|
6 | (2) |
|
1.2.2 Partial least squares SEM |
|
|
8 | (1) |
|
1.2.3 Consistent partial least squares SEM |
|
|
9 | (1) |
|
1.3 What Analyses Can PLS-SEM Do? |
|
|
10 | (1) |
|
1.4 The Language of PLS-SEM |
|
|
11 | (2) |
|
|
13 | (2) |
|
2 Multivariate Statistics Prerequisites |
|
|
15 | (74) |
|
|
15 | (4) |
|
2.2 Principal Component Analysis |
|
|
19 | (9) |
|
|
28 | (21) |
|
|
28 | (2) |
|
2.3.1.1 Hierarchical clustering algorithms |
|
|
30 | (9) |
|
2.3.1.2 Partitional clustering algorithms |
|
|
39 | (3) |
|
2.3.2 Finite mixture models and model-based clustering |
|
|
42 | (6) |
|
2.3.3 Latent class analysis |
|
|
48 | (1) |
|
|
49 | (7) |
|
2.5 Getting to Partial Least Squares Structural Equation Modelling |
|
|
56 | (3) |
|
|
59 | (1) |
|
|
59 | (21) |
|
|
60 | (2) |
|
Principal component analysis |
|
|
62 | (3) |
|
|
65 | (9) |
|
|
74 | (1) |
|
|
74 | (6) |
|
Appendix: Technical Details |
|
|
80 | (9) |
|
More insights on the bootstrap |
|
|
80 | (2) |
|
The algebra of principal components analysis |
|
|
82 | (2) |
|
Clustering stopping rules |
|
|
84 | (2) |
|
Finite mixture models estimation and selection |
|
|
86 | (1) |
|
Path analysis using matrices |
|
|
87 | (2) |
|
3 PLS Structural Equation Modelling: Specification and Estimation |
|
|
89 | (66) |
|
|
89 | (3) |
|
|
92 | (9) |
|
3.2.1 Outer (measurement) model |
|
|
93 | (3) |
|
3.2.2 Inner (structural) model |
|
|
96 | (1) |
|
3.2.3 Application: Tourists satisfaction |
|
|
97 | (4) |
|
|
101 | (7) |
|
3.3.1 The PLS-SEM algorithm |
|
|
102 | (1) |
|
3.3.2 Stage I: Iterative estimation of latent variable scores |
|
|
103 | (4) |
|
3.3.3 Stage II: Estimation of measurement model parameters |
|
|
107 | (1) |
|
3.3.4 Stage III: Estimation of structural model parameters |
|
|
107 | (1) |
|
3.4 Bootstrap-based Inference |
|
|
108 | (2) |
|
3.5 The plssemStata Package |
|
|
110 | (8) |
|
|
111 | (1) |
|
|
112 | (1) |
|
|
113 | (1) |
|
3.5.4 Application: Tourists satisfaction (cont.) |
|
|
113 | (5) |
|
|
118 | (5) |
|
3.6.1 Application: Tourists satisfaction (cont.) |
|
|
121 | (2) |
|
|
123 | (4) |
|
3.8 Sample Size Requirements |
|
|
127 | (2) |
|
|
129 | (5) |
|
3.9.1 The pis seme command |
|
|
130 | (4) |
|
3.10 Higher Order Constructs |
|
|
134 | (5) |
|
|
139 | (1) |
|
|
140 | (11) |
|
|
141 | (4) |
|
|
145 | (6) |
|
Appendix: Technical Details |
|
|
151 | (4) |
|
A formal definition of PLS-SEM |
|
|
151 | (2) |
|
More details on the consistent PLS-SEM approach |
|
|
153 | (2) |
|
4 PLS Structural Equation Modelling: Assessment and Interpretation |
|
|
155 | (32) |
|
|
155 | (1) |
|
4.2 Assessing the Measurement Part |
|
|
156 | (7) |
|
4.2.1 Reflective measurement models |
|
|
156 | (1) |
|
4.2.1.1 Unidimensionality |
|
|
156 | (1) |
|
4.2.1.2 Construct reliability |
|
|
157 | (1) |
|
4.2.1.3 Construct validity |
|
|
157 | (2) |
|
4.2.2 Higher order reflective measurement models |
|
|
159 | (1) |
|
4.2.3 Formative measurement models |
|
|
160 | (1) |
|
|
161 | (1) |
|
4.2.3.2 Multicollinearity |
|
|
161 | (2) |
|
|
163 | (1) |
|
4.3 Assessing the Structural Part |
|
|
163 | (4) |
|
|
164 | (1) |
|
|
165 | (1) |
|
|
165 | (2) |
|
4.4 Assessing a PLS-SEM Model: A Full Example |
|
|
167 | (11) |
|
4.4.1 Setting up the model using plssem |
|
|
167 | (3) |
|
4.4.2 Estimation using plssem in Stata |
|
|
170 | (2) |
|
4.4.3 Evaluation of the example study model |
|
|
172 | (1) |
|
|
172 | (4) |
|
|
176 | (2) |
|
|
178 | (1) |
|
|
178 | (5) |
|
Appendix: Technical Details |
|
|
183 | (4) |
|
Tools for assessing the measurement part of a PLS-SEM model |
|
|
183 | (2) |
|
Tools for assessing the structural part of a PLS-SEM model |
|
|
185 | (2) |
|
|
187 | (90) |
|
5 Mediation Analysis With PLS-SEM |
|
|
189 | (26) |
|
|
189 | (1) |
|
5.2 Baron and Kenny's Approach to Mediation Analysis |
|
|
189 | (6) |
|
5.2.1 Modifying the Baron-Kenny approach |
|
|
191 | (1) |
|
5.2.2 Alternative to the Baron-Kenny approach |
|
|
192 | (3) |
|
5.2.3 Effect size of the mediation |
|
|
195 | (1) |
|
|
195 | (12) |
|
5.3.1 Example I: A single observed mediator variable |
|
|
196 | (2) |
|
5.3.2 Example 2: A single latent mediator variable |
|
|
198 | (5) |
|
5.3.3 Example 3: Multiple latent mediator variables |
|
|
203 | (4) |
|
|
207 | (1) |
|
|
207 | (1) |
|
|
208 | (7) |
|
6 Moderating/Interaction Effects Using PLS-SEM |
|
|
215 | (34) |
|
|
215 | (2) |
|
6.2 Product-Indicator Approach |
|
|
217 | (3) |
|
|
220 | (3) |
|
6.4 Multi-Sample Approach |
|
|
223 | (3) |
|
|
224 | (1) |
|
|
225 | (1) |
|
6.5 Example Study: Interaction Effects |
|
|
226 | (9) |
|
6.5.1 Application of the product-indicator approach |
|
|
226 | (3) |
|
6.5.2 Application of the two-stage approach |
|
|
229 | (1) |
|
6.5.2.1 Two-stage as an alternative to product-indicator |
|
|
229 | (1) |
|
6.5.2.2 Two-stage with a categorical moderator |
|
|
230 | (4) |
|
6.5.3 Application of the multi-sample approach |
|
|
234 | (1) |
|
6.6 Measurement Model Invariance |
|
|
235 | (2) |
|
|
237 | (1) |
|
|
238 | (11) |
|
Application of the product-indicator approach |
|
|
238 | (1) |
|
Application of the two-stage approach |
|
|
239 | (4) |
|
Application of the multi-sample approach |
|
|
243 | (4) |
|
Measurement model invariance |
|
|
247 | (2) |
|
7 Detecting Unobserved Heterogeneity in PLS-SEM |
|
|
249 | (28) |
|
|
249 | (2) |
|
7.2 Methods for the Identification and Estimation of Unobserved Heterogeneity in PLS-SEM |
|
|
251 | (17) |
|
7.2.1 Response-based unit segmentation in PLS-SEM |
|
|
251 | (10) |
|
7.2.2 Finite mixture PLS (FIMIX-PLS) |
|
|
261 | (5) |
|
|
266 | (1) |
|
7.2.3.1 Path modelling segmentation tree algorithm (Path-mox) |
|
|
266 | (1) |
|
7.2.3.2 Partial least squares genetic algorithm segmentation (PLS-GAS) |
|
|
267 | (1) |
|
|
268 | (1) |
|
|
268 | (3) |
|
Appendix: Technical Details |
|
|
271 | (6) |
|
The math behind the REBUS-PLS algorithm |
|
|
271 | (3) |
|
|
274 | (3) |
|
|
277 | (10) |
|
8 How to Write Up a PLS-SEM Study |
|
|
279 | (8) |
|
8.1 Publication Types and Structure |
|
|
279 | (1) |
|
8.2 Example of PLS-SEM Publication |
|
|
280 | (5) |
|
|
285 | (2) |
|
|
287 | (2) |
|
A Basic Statistics Prerequisites |
|
|
289 | (32) |
|
A.1 Covariance and Correlation |
|
|
289 | (7) |
|
A.2 Linear Regression Analysis |
|
|
296 | (24) |
|
A.2.1 The simple linear regression model |
|
|
296 | (3) |
|
|
299 | (1) |
|
A.2.3 The multiple linear regression model |
|
|
300 | (2) |
|
A.2.4 Inference for the linear regression model |
|
|
302 | (1) |
|
A.2.4.1 Normal-based inference |
|
|
303 | (2) |
|
A.2.5 Categorical predictors |
|
|
305 | (4) |
|
|
309 | (2) |
|
|
311 | (9) |
|
|
320 | (1) |
|
|
321 | (1) |
Covariance and correlation |
|
321 | (4) |
Bibliography |
|
325 | (16) |
Index |
|
341 | |