Atjaunināt sīkdatņu piekrišanu

E-grāmata: Structural Mechanics: Modelling and Analysis of Frames and Trusses

  • Formāts: PDF+DRM
  • Izdošanas datums: 23-Nov-2015
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781119159353
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 60,61 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 23-Nov-2015
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781119159353
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Textbook covers the fundamental theory of structural mechanics and the modelling and analysis of frame and truss structures

  • Deals with modelling and analysis of trusses and frames using a systematic matrix formulated displacement method with the language and flexibility of the finite element method
  • Element matrices are established from analytical solutions to the differential equations 
  • Provides a strong toolbox with elements and algorithms for computational modelling and numerical exploration of truss and frame structures
  • Discusses the concept of stiffness as a qualitative tool to explain structural behaviour
  • Includes numerous exercises, for some of which the computer software CALFEM is used. In order to support the learning process CALFEM gives the user full overview of the matrices and algorithms used in a finite element analysis

 

Preface ix
1 Matrix Algebra
1(12)
1.1 Definitions
1(1)
1.2 Addition and Subtraction
2(1)
1.3 Multiplication
2(1)
1.4 Determinant
3(1)
1.5 Inverse Matrix
3(1)
1.6 Counting Rules
4(1)
1.7 Systems of Equations
4(9)
1.7.1 Systems of Equations with Only Unknown Components in the Vector a
5(1)
1.7.2 Systems of Equations with Known and Unknown Components in the Vector a
6(2)
1.7.3 Eigenvalue Problems
8(2)
Exercises
10(3)
2 Systems of Connected Springs
13(18)
2.1 Spring Relations
16(1)
2.2 Spring Element
16(1)
2.3 Systems of Springs
17(14)
Exercises
30(1)
3 Bars and Trusses
31(40)
3.1 The Differential Equation for Bar Action
33(10)
3.1.1 Definitions
33(2)
3.1.2 The Material Level
35(3)
3.1.3 The Cross-Section Level
38(3)
3.1.4 Bar Action
41(2)
3.2 Bar Element
43(12)
3.2.1 Definitions
43(1)
3.2.2 Solving the Differential Equation
43(8)
3.2.3 From Local to Global Coordinates
51(4)
3.3 Trusses
55(16)
Exercises
66(5)
4 Beams and Frames
71(44)
4.1 The Differential Equation for Beam Action
73(7)
4.1.1 Definitions
73(1)
4.1.2 The Material Level
74(1)
4.1.3 The Cross-Section Level
75(3)
4.1.4 Beam Action
78(2)
4.2 Beam Element
80(15)
4.2.1 Definitions
81(1)
4.2.2 Solving the Differential Equation for Beam Action
81(9)
4.2.3 Beam Element with Six Degrees of Freedom
90(2)
4.2.4 From Local to Global Directions
92(3)
4.3 Frames
95(20)
Exercises
109(6)
5 Modelling at the System Level
115(42)
5.1 Symmetry Properties
116(4)
5.2 The Structure and the System of Equations
120(24)
5.2.1 The Deformations and Displacements of the System
121(9)
5.2.2 The Forces and Equilibria of the System
130(2)
5.2.3 The Stiffness of the System
132(12)
5.3 Structural Design and Simplified Manual Calculations
144(13)
5.3.1 Characterising Structures
144(1)
5.3.2 Axial and Bending Stiffness
145(2)
5.3.3 Reducing the Number of Degrees of Freedom
147(2)
5.3.4 Manual Calculation Using Elementary Cases
149(2)
Exercises
151(6)
6 Flexible Supports
157(26)
6.1 Flexible Supports at Nodes
157(2)
6.2 Foundation on Flexible Support
159(6)
6.2.1 The Constitutive Relations of the Connection Point
159(2)
6.2.2 The Constitutive Relation of the Base Surface
161(2)
6.2.3 Constitutive Relation for the Support Point of the Structure
163(2)
6.3 Bar with Axial Springs
165(6)
6.3.1 The Differential Equation for Bar Action with Axial Springs
165(2)
6.3.2 Bar Element
167(4)
6.4 Beam on Elastic Spring Foundation
171(12)
6.4.1 The Differential Equation for Beam Action with Transverse Springs
171(2)
6.4.2 Beam Element
173(7)
Exercises
180(3)
7 Three-Dimensional Structures
183(34)
7.1 Three-Dimensional Bar Element
186(2)
7.2 Three-Dimensional Trusses
188(6)
7.3 The Differential Equation for Torsional Action
194(9)
7.3.1 Definitions
194(1)
7.3.2 The Material Level
195(2)
7.3.3 The Cross-Section Level
197(5)
7.3.4 Torsional Action
202(1)
7.4 Three-Dimensional Beam Element
203(6)
7.4.1 Element for Torsional Action
204(1)
7.4.2 Beam Element with 12 Degrees of Freedom
205(1)
7.4.3 From Local to Global Directions
206(3)
7.5 Three-Dimensional Frames
209(8)
Exercises
213(4)
8 Flows in Networks
217(34)
8.1 Heat Transport
219(10)
8.1.1 Definitions
219(3)
8.1.2 The Material Level
222(2)
8.1.3 The Cross-Section Level
224(1)
8.1.4 The Equation for Heat Conduction
225(2)
8.1.5 Convection and Radiation
227(2)
8.2 Element for Heat Transport
229(6)
8.2.1 Definitions
230(1)
8.2.2 Solving the Heat Conduction Equation
230(5)
8.3 Networks of One-Dimensional Heat-Conducting Elements
235(7)
8.4 Analogies
242(9)
8.4.1 Diffusion -- Fick's Law
242(1)
8.4.2 Liquid Flow in Porous Media -- Darcy's Law
243(1)
8.4.3 Laminar Pipe Flow -- Poiseuille's Law
244(1)
8.4.4 Electricity -- Ohm's Law
245(1)
8.4.5 Summary
246(1)
Exercises
247(4)
9 Geometrical Non-Linearity
251(30)
9.1 Methods of Calculation
252(3)
9.2 Trusses with Geometrical Non-Linearity Considered
255(7)
9.2.1 The Differential Equation for Bar Action
256(1)
9.2.2 Bar Element
257(3)
9.2.3 Trusses
260(2)
9.3 Frames with Geometrical Non-Linearity Considered
262(15)
9.3.1 The Differential Equation for Beam Action
262(3)
9.3.2 Beam Element
265(9)
9.3.3 Frames
274(3)
9.4 Three-Dimensional Geometric Non-Linearity
277(4)
Exercises
278(3)
10 Material Non-Linearity
281(20)
10.1 Calculation Procedures
282(2)
10.2 Elastic--Perfectly Plastic Material
284(1)
10.3 Trusses with Material Non-Linearity Considered
285(4)
10.4 Frames with Material Non-Linearity Considered
289(12)
Exercises
298(3)
Appendix A Notations 301(2)
Appendix B Answers to the Exercises 303(20)
Index 323
Karl-Gunnar Olsson is professor in Architecture and Engineering at the Department of Architecture at Chalmers University of Technology in Gothenburg. His research is mainly aimed at development of concepts and forms for representation of engineering systems in the building design process. This includes the interaction between architects and engineers as well as the dialogue and the digital tools needed in early design phases, and range from architectural conservation to design of new buildings. Central is the formulation of theoretical concepts that support conceptual understanding of mechanical systems, such as the concept of canonical stiffness. Karl-Gunnar Olsson is also responsible for the dual degree, Master of Architecture (MArch) and MSc in Engineering, programme Architecture and Engineering at Chalmers.

Ola Dahlblom is professor in Structural Mechanics at Lund University.  His main area of research is material mechanics with development of computational models for materials with complex internal structure. Examples of applications are the behaviour of concrete during hardening and the shape change of sawn timber during drying. An important part of this work is the development of computer code for simulation and visualisation of the structural behaviour. He has in recent years also been a driving force behind renewal of literature and development of computer programs for teaching structural mechanics in the Bachelor of Science and Master of Science educations.