Atjaunināt sīkdatņu piekrišanu

Structural Motion Engineering 2014 ed. [Hardback]

  • Formāts: Hardback, 619 pages, height x width: 235x155 mm, 84 Illustrations, color; 313 Illustrations, black and white; XIII, 619 p. 397 illus., 84 illus. in color., 1 Hardback
  • Izdošanas datums: 18-Jul-2014
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319062808
  • ISBN-13: 9783319062808
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 180,78 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 212,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 619 pages, height x width: 235x155 mm, 84 Illustrations, color; 313 Illustrations, black and white; XIII, 619 p. 397 illus., 84 illus. in color., 1 Hardback
  • Izdošanas datums: 18-Jul-2014
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319062808
  • ISBN-13: 9783319062808
Citas grāmatas par šo tēmu:
This innovative volume provides a systematic treatment of the basic concepts and computational procedures for structural motion design and engineering for civil installations. The authors illustrate the application of motion control to a wide spectrum of buildings through many examples. Topics covered include optimal stiffness distributions for building-type structures, the role of damping in controlling motion, tuned mass dampers, base isolation systems, linear control, and nonlinear control. The book's primary objective the satisfaction of motion-related design requirements such as restrictions on displacement and acceleration and seeks the optimal deployment of material stiffness and motion control devices to achieve these design targets as well as satisfy constraints on strength. The book is ideal for practicing engineers and graduate students.
1 Introduction
1(32)
1.1 Source of Motion Problems
1(2)
1.2 Structural Motion Engineering Methodology
3(1)
1.3 Motion Versus Strength Issues: Static Loading
3(9)
1.3.1 Building Type Structures
3(7)
1.3.2 Bridge Type Structures
10(2)
1.4 Motion-Induced Problems: Periodic Loading
12(9)
1.4.1 Resonance-Related Problems
12(2)
1.4.2 Response for Periodic Excitation
14(7)
1.5 Motion Control Methodologies
21(5)
1.5.1 Passive and Active Control
21(5)
1.5.2 Desired Response
26(1)
1.6 Scope of Text
26(7)
Part I Passive Control
2 Optimal Stiffness Distribution: Static Loading
33(42)
2.1 Introduction
33(1)
2.2 Governing Equations: Transverse Bending of Planar Beams
34(9)
2.2.1 Planar Deformation--Displacement Relations
34(1)
2.2.2 Optimal Deformation and Displacement Profiles
35(2)
2.2.3 Equilibrium Equations
37(1)
2.2.4 Force--Deformation Relations
38(5)
2.3 Stiffness Distribution for a Continuous Cantilever Beam Under Static Loading
43(5)
2.4 Buildings Modeled as Shear Beams
48(6)
2.4.1 Governing Equations for Buildings Modeled as Pseudo Shear Beams
48(4)
2.4.2 Stiffness Distribution for a Discrete Shear Beam: Static Loading
52(2)
2.5 Stiffness Distribution: Truss Under Static Loading
54(21)
2.5.1 An Introductory Example
54(8)
2.5.2 A General Procedure
62(13)
3 Optimal Stiffness/Damping for Dynamic Loading
75(66)
3.1 Introduction
75(1)
3.2 Dynamic Response: MDOF
75(24)
3.2.1 Modal Equations: MDOF System
76(6)
3.2.2 General Solution: Convolution Integral
82(1)
3.2.3 Periodic Excitation
83(3)
3.2.4 Seismic Loading: Response Spectra
86(6)
3.2.5 Selection of Modes
92(7)
3.3 Stiffness Distribution for a Cantilever Beam: Dynamic Response
99(4)
3.4 Stiffness Distribution for a Discrete Shear Beam: Dynamic Response
103(2)
3.5 Stiffness Calibration: Fundamental Mode Response
105(26)
3.5.1 Discrete Shear Beam
105(4)
3.5.2 Continuous Beam
109(4)
3.5.3 Periodic Excitation
113(5)
3.5.4 Seismic Excitation
118(1)
3.5.5 Construction of Spectral Displacement Response Spectra
119(8)
3.5.6 Calibration Examples
127(4)
3.6 Stiffness Modification for Seismic Excitation
131(10)
3.6.1 Iterative Procedure
131(1)
3.6.2 Multiple Mode Response
131(10)
4 Optimal Passive Damping Distribution
141(58)
4.1 Introduction
141(5)
4.2 Viscous, Frictional, and Hysteretic Damping
146(10)
4.2.1 Viscous Damping
146(4)
4.2.2 Friction Damping
150(2)
4.2.3 Hysteretic Damping
152(4)
4.3 Viscoelastic Material Damping
156(5)
4.4 Equivalent Viscous Damping
161(7)
4.5 Damping Parameters: Discrete Shear Beam
168(15)
4.5.1 Damping Systems
168(3)
4.5.2 Rigid Structural Members: Linear Viscous Behavior
171(2)
4.5.3 Rigid Structural Members: Linear Viscoelastic Behavior
173(6)
4.5.4 Flexible Structural Members: Linear Viscoelastic Behavior
179(4)
4.6 Damping Parameters: Truss Beam
183(16)
4.6.1 Linear Viscous Behavior
184(1)
4.6.2 Linear Viscoelastic Behavior
185(14)
5 Tuned Mass Damper Systems
199(80)
5.1 Introduction
199(1)
5.2 An Introductory Example
200(4)
5.3 Examples of Existing Tuned Mass Damper Systems
204(10)
5.3.1 Translational Tuned Mass Dampers
204(4)
5.3.2 Pendulum Tuned Mass Damper
208(6)
5.4 Tuned Mass Damper Theory for SDOF Systems
214(24)
5.4.1 Undamped Structure: Undamped TMD
214(2)
5.4.2 Undamped Structure: Damped TMD
216(11)
5.4.3 Damped Structure: Damped TMD
227(11)
5.5 Case Studies: SDOF Systems
238(7)
5.6 Tuned Mass Damper Theory for MDOF Systems
245(15)
5.7 Tuned Liquid Column Dampers
260(19)
5.7.1 Design Methodology for TLCD
269(10)
6 Base Isolation Systems
279(68)
6.1 Introduction
279(1)
6.2 Isolation for SDOF Systems
280(16)
6.2.1 SDOF Examples
280(3)
6.2.2 Bearing Terminology
283(6)
6.2.3 Modified SDOF Model
289(1)
6.2.4 Periodic Excitation: Modified SDOF Model
290(3)
6.2.5 Seismic Excitation: Modified SDOF Model
293(3)
6.3 Design Issues for Structural Isolation Systems
296(6)
6.3.1 Flexibility
296(1)
6.3.2 Rigidity Under Low-Level Lateral Loads
297(3)
6.3.3 Energy Dissipation/Absorption
300(1)
6.3.4 Applicability of Base Isolation Systems
301(1)
6.4 Modeling Strategies for Rubber Bearings
302(6)
6.4.1 Modeling of a Natural Rubber Bearing
302(3)
6.4.2 Modeling of a Lead Rubber Bearing
305(3)
6.5 Examples of Existing Base Isolation Systems
308(9)
6.5.1 USC University Hospital
308(1)
6.5.2 Fire Department Command and Control Facility
308(1)
6.5.3 Evans and Sutherland Manufacturing Facility
309(1)
6.5.4 Salt Lake City Building
310(1)
6.5.5 The Toushin 24 Ohmori Building
311(2)
6.5.6 Bridgestone Toranomon Building
313(1)
6.5.7 San Francisco City Hall
314(1)
6.5.8 Long Beach V.A. Hospital
314(1)
6.5.9 Mills-Peninsula Health Services New Hospital
314(2)
6.5.10 Benicia-Martinez Bridge
316(1)
6.5.11 The Cathedral of Christ the Light
316(1)
6.6 Optimal Stiffness Distribution: Discrete Shear Beam
317(8)
6.6.1 Scaled Stiffness Distribution
317(5)
6.6.2 Stiffness Calibration for Seismic Isolation
322(3)
6.7 Optimal Stiffness Distribution: Continuous Cantilever Beam
325(22)
6.7.1 Stiffness Distribution: Undamped Response
325(7)
6.7.2 Fundamental Mode Equilibrium Equation
332(2)
6.7.3 Rigidity Calibration: Seismic Excitation
334(13)
Part II Active and Semi-Active Control
7 Applications of Active Control
347(40)
7.1 The Nature of Active and Semi-Active Control
347(11)
7.1.1 Active Versus Passive Control
347(3)
7.1.2 The Role of Feedback
350(1)
7.1.3 Computational Requirements and Models for Active Control
351(1)
7.1.4 An Introductory Example of Dynamic Feedback Control
352(6)
7.2 Active and Semi-Active Device Technologies
358(29)
7.2.1 Active Versus Semi-Active Devices
358(1)
7.2.2 Force Application Schemes
359(4)
7.2.3 Large-Scale Linear Actuators
363(3)
7.2.4 Semi-Active Device Technologies
366(10)
7.2.5 Smart Materials
376(5)
7.2.6 Hybrid Systems
381(6)
8 Structural Control Dynamics
387(96)
8.1 Introduction
387(1)
8.2 State-Space Formulation: Linear Time-Invariant SDOF Systems
387(18)
8.2.1 Governing Equations
387(2)
8.2.2 Free Vibration Uncontrolled Response
389(2)
8.2.3 General Solution: Linear Time-Invariant Systems
391(2)
8.2.4 Stability Criterion
393(1)
8.2.5 Linear Negative Feedback
394(2)
8.2.6 Effect of Time Delay on Feedback Control
396(3)
8.2.7 Stability Analysis for Time Delay
399(6)
8.3 Discrete Time Formulation: SDOF Systems
405(18)
8.3.1 Governing Equation
405(2)
8.3.2 Linear Negative Feedback Control
407(1)
8.3.3 Stability Analysis for Time-Invariant Linear Feedback Control
407(16)
8.4 State-Space Formulation for MDOF Systems
423(60)
8.4.1 Notation and Governing Equations
423(1)
8.4.2 Free Vibration Response: Time-Invariant Uncontrolled System
424(5)
8.4.3 Orthogonality Properties of the State Eigenvectors
429(2)
8.4.4 Determination of W and fj
431(2)
8.4.5 General Solution: Time-Invariant System
433(1)
8.4.6 Modal State-Space Formulation: Uncoupled Damping
433(3)
8.4.7 Modal State-Space Formulation: Arbitrary Damping
436(20)
8.4.8 Stability Analysis: Discrete Modal Formulation
456(18)
8.4.9 Controllability of a Particular Modal Response
474(3)
8.4.10 Observability of a Particular Modal Response
477(6)
9 Linear Control
483(62)
9.1 Introduction
483(1)
9.2 Optimal Linear Feedback: Time-Invariant SDOF Systems
483(31)
9.2.1 Quadratic Performance Index
483(2)
9.2.2 An Example: Linear Quadratic Regulator Control Algorithm
485(4)
9.2.3 The Continuous Time Algebraic Riccati Equation
489(4)
9.2.4 The Discrete Time Algebraic Riccati Equation
493(9)
9.2.5 Finite Interval Discrete Time Algebraic Riccati Equation
502(2)
9.2.6 Continuous Time Riccati Differential Equation
504(1)
9.2.7 Variational Formulation of the Continuous Time Riccati Equation
505(9)
9.3 LQR Control Algorithm: MDOF Time-Invariant Systems
514(31)
9.3.1 Continuous Time Modal Formulation
514(2)
9.3.2 Discrete Time Modal Formulation
516(2)
9.3.3 Application Studies: LQR Control
518(27)
10 Advanced Control Theory
545(56)
10.1 Introduction
545(1)
10.2 State Controllability
545(2)
10.3 State Observability
547(3)
10.4 State Observer
550(7)
10.5 Input--Output Relations: H2 and H∞ Control
557(14)
10.5.1 SDOF Input--Output Relations
557(4)
10.5.2 Norm of Functions
561(1)
10.5.3 Input--Output Relationships Revisited
562(7)
10.5.4 MDOF Input--Output Relations
569(2)
10.6 Introduction to Nonlinear Control
571(10)
10.6.1 Lyapunov Stability Theory
572(3)
10.6.2 Sliding Mode Control
575(6)
10.7 Applications to Semi-Active and Hybrid Systems
581(20)
10.7.1 Linear Controller for a Semi-Active TLCD
582(4)
10.7.2 Variable Stiffness
586(8)
10.7.3 Variable Fluids
594(7)
Bibliography 601(6)
Index 607
Dr. Jerome Connor is Professor of Civil Engineering at the Massachusetts Institute of Technology. Dr. Simon Laflamme is Assistant Professor of Civil, Construction, and Environmental Engineering at Iowa State University.