Atjaunināt sīkdatņu piekrišanu

E-grāmata: Structural Sensing, Health Monitoring, and Performance Evaluation

  • Formāts: 662 pages
  • Sērija : Series in Sensors
  • Izdošanas datums: 21-Sep-2010
  • Izdevniecība: Taylor & Francis Ltd
  • Valoda: eng
  • ISBN-13: 9781040068649
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 77,63 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 662 pages
  • Sērija : Series in Sensors
  • Izdošanas datums: 21-Sep-2010
  • Izdevniecība: Taylor & Francis Ltd
  • Valoda: eng
  • ISBN-13: 9781040068649
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Structural health monitoring (SHM) uses one or more in situ sensing systems placed in or around a structure, providing real-time evaluation of its performance and ultimately preventing structural failure. Although most commonly used in civil engineering, such as in roads, bridges, and dams, SHM is now finding applications in other engineering environments, such as naval and aerospace engineering.





Written by a highly respected expert in the field, Structural Sensing, Health Monitoring, and Performance Evaluation provides the first comprehensive coverage of SHM. The text begins with a review of the various types of sensors currently used in SHM, including point sensors and noncontact systems. Subsequent chapters explain the processing and interpretation of data from a number of sensors working in parallel. After considering issues related to the structures themselves, the author surveys the design of a tailor-made SHM system. He also presents a collection of case studies, many of which are drawn from his own experiences.





Exploring the power of sensors, this book shows how SHM technologies can be applied to a variety of structures and systems, including multistory buildings, offshore wind energy plants, and ecological systems.
Preface xiii
Acknowledgments xv
1 Introduction
1(18)
1.1 Need for Structural and Performance Health Monitoring
3(2)
1.2 Technical Challenges in SHM and Performance Assessment
5(2)
1.3 Measurands
7(3)
1.3.1 Geometric Configuration
7(1)
1.3.2 Kinematics: Displacement, Velocity, and Acceleration
7(1)
1.3.3 Strain
8(1)
1.3.4 Force, Pressure, and Stress
8(1)
1.3.5 Strength
8(1)
1.3.6 Temperature
8(1)
1.3.7 Cracks
9(1)
1.3.8 Fatigue
9(1)
1.3.9 Chemical State
9(1)
1.3.10 Air/Moisture Permeability and Content
9(1)
1.3.11 Electrical, Magnetic, and Electromagnetic Properties
9(1)
1.3.12 Scour Meters
10(1)
1.4 Sensor Performance Benchmarks
10(4)
1.4.1 Sensor Dimensionality and Spatial Dependence
10(1)
1.4.2 Data Format
11(1)
1.4.3 Precision and Accuracy
11(1)
1.4.4 Linearity
11(1)
1.4.5 Dynamic Range
12(1)
1.4.6 Rise Time and Frequency Dependence
12(1)
1.4.7 Cross Talk
13(1)
1.4.8 Durability, Maintainability, and Redundancy
13(1)
1.4.9 Calibration and Self-Calibration
13(1)
1.4.10 Registration
14(1)
1.4.11 Power
14(1)
1.4.12 Ease of Use and Cost
14(1)
1.5 Data Collection, Storage, and Transmission
14(1)
1.6 Data Processing, Decision Making, and Prognosis
14(1)
1.7 Future of SHM
14(1)
References
15(4)
2 Point Sensors
19(58)
2.1 Mechanical Sensors
19(11)
2.1.1 Accelerometers
19(2)
2.1.2 Dial Indicators, Whittemore and Scaratch Gages
21(1)
2.1.3 Tiltmeters
22(1)
2.1.4 Vibrating-Wire Strain Gages
22(1)
2.1.5 Wire Tension Meter
23(1)
2.1.6 Crack and Joint Width Measurement Systems
24(1)
2.1.7 Schmidt Hammer
25(1)
2.1.8 Concrete Force Extraction and Pulloff Testers
26(1)
2.1.9 Permeability Testers
26(1)
2.1.10 Stress Meters and Pressure Gages
26(2)
2.1.11 Mine Posts and Mine Flags
28(1)
2.1.12 Peak Strain Sensors and Fatigue Fuses
28(1)
2.1.13 Scour Meters
29(1)
2.2 Electrical Sensors
30(21)
2.2.1 Electrical Resistance Sensors
31(1)
2.2.2 Resistive Strain Gages
32(7)
2.2.3 2-D and 3-D Strain Gage Rosettes and Spiders
39(3)
2.2.4 Load Cells
42(1)
2.2.5 Resistive Temperature Gages
43(1)
2.2.6 Thermoelectric Sensors
44(1)
2.2.7 Capacitive Sensors
44(1)
2.2.8 Magnetic Inductance and Reluctance-Based Sensors
45(1)
2.2.9 Electromechanical Sensors
46(3)
2.2.9.1 Piezoelectric and Magnetostrictive Sensors
49(2)
2.3 Fiber Optic Sensors
51(7)
2.3.1 Intensity-Based Fiber Optic Sensors
52(1)
2.3.2 Interference-Based Point Sensors
52(1)
2.3.3 Polarization-Based Sensors
53(1)
2.3.4 Bragg Grating-Based Fiber Optic Strain Gages
54(4)
2.4 Chemical and Corrosion Sensors
58(3)
References
61(16)
3 Distributed and Noncontact Sensors
77(98)
3.1 Introduction
77(1)
3.2 Noncolocated Point Sensors
77(13)
3.2.1 Plumb Bobs and Inclinometers
77(2)
3.2.2 Liquid-Level Meter
79(1)
3.2.3 Half-Cell Corrosion and Resistance Meters
80(2)
3.2.4 Line-of-Sight Optical Instruments
82(1)
3.2.5 Radio-Based, Global Positioning System, and Time-of-Flight Instruments
83(1)
3.2.6 Long-Gage-Length Fiber Optic Strain Sensors
84(2)
3.2.7 Multipoint Extensometer Sensing Systems
86(1)
3.2.8 Modern Physics Sensors
87(3)
3.3 1-D Distributed Sensors
90(31)
3.3.1 Quasi-Static Sensors
90(3)
3.3.2 Operational Model of Quasi-Static 1-D Sensors
93(2)
3.3.3 Spatial Sensitivity, Antenna Gain, and Tuning of 1-D Sensors
95(4)
3.3.4 Time Domain Reflectometry
99(8)
3.3.5 Elastic Waves: Sonar and Ultrasound
107(5)
3.3.6 Impact-Echo Testing
112(2)
3.3.7 EM Waves: 1-D Ground Penetrating Radar
114(6)
3.3.8 Magnetic Induction and Circuits
120(1)
3.4 2-D Sensors
121(8)
3.4.1 Nonimaging 2-D Sensors
121(1)
3.4.2 Piezoelectric Transducer Networks
121(1)
3.4.3 2-D Surface Profile Measurements: Mechanical, Laser Scanning, and Interferometric Instruments
122(2)
3.4.4 Visual Inspection
124(1)
3.4.5 2-D Imaging Sensors
124(1)
3.4.6 Photographic and Video Image Processing
124(2)
3.4.7 Temperature Sensing and IR Thermography
126(2)
3.4.8 Magnetic Particle Detection
128(1)
3.4.9 Dye Penetrant and Soap Examination
128(1)
3.4.10 Electrical Impedance Tomography
128(1)
3.5 3-D Sensing
129(13)
3.5.1 Nonimaging 3-D Systems
129(2)
3.5.2 Chain Drag and Rotary Percussion Sounding
131(1)
3.5.3 Eddy Current Sensing
131(1)
3.5.4 Imaging GPR and Ultrasound
132(4)
3.5.5 GPR Regulatory Environment
136(1)
3.5.6 Acoustic Emission Monitoring
137(4)
3.5.7 Radiography
141(1)
References
142(33)
4 Data Acquisition, Conditioning, and Sensor Networking
175(50)
4.1 Amplitude Range and Quantization
175(3)
4.2 Digitization in Time and Space
178(4)
4.3 Transducer Registration and Smart Sensors
182(5)
4.3.1 Transducer Registration
183(1)
4.3.2 Spatial Registration
183(1)
4.3.3 Temporal Registration
184(1)
4.3.4 Smart Sensors and IEEE 1451
185(2)
4.4 Data Transmission
187(17)
4.4.1 Analog Wired Data Transmission
189(3)
4.4.2 Acoustic and Ultrasonic Data Transmission
192(1)
4.4.3 Radio Wireless Telemetry
192(4)
4.4.4 Eye Diagrams
196(1)
4.4.5 Power Supply and Consumption
197(1)
4.4.6 Battery Power Supply
197(1)
4.4.7 Ambient Energy Harvesting
197(3)
4.4.8 Wireless Power Transmission
200(1)
4.4.9 Passive Wireless Sensors: RFID
201(3)
4.5 Sensor Networks
204(10)
4.5.1 Network Architectures
205(5)
4.5.2 Integrated and Real-Time Systems
210(1)
4.5.3 Data Protocols: Senders, Receivers, and Transceivers
210(2)
4.5.4 Self-Assembly Ad Hoc Networks
212(1)
4.5.5 Distributed Computations
213(1)
4.6 Data Storage
214(1)
References
214(11)
5 Data Processing
225(56)
5.1 Probability Distributions
225(9)
5.1.1 Joint and Conditional Probability, and Bayes Theorem
227(2)
5.1.2 Functions of PDFs
229(1)
5.1.3 Common PDFs
230(3)
5.1.4 Rare Event Distributions
233(1)
5.2 Statistics on Unordered Data
234(1)
5.3 Statistics on Ordered Data
235(35)
5.3.1 Auto- and Cross-Correlation Functions
239(1)
5.3.2 Regression Analysis and System Identification
240(2)
5.3.3 Fourier and Spectral Methods
242(2)
5.3.4 Spectral Estimates
244(1)
5.3.5 Cross-Spectra
245(1)
5.3.6 Coherence Functions
246(1)
5.3.7 FRF Estimators
247(1)
5.3.8 Time Series Modeling
248(4)
5.3.9 Time-Frequency Analysis
252(1)
5.3.10 Short-Time Fourier Transform
252(1)
5.3.11 Hilbert Transform
253(3)
5.3.12 HHT and Empirical Mode Decomposition
256(1)
5.3.13 Wigner-Ville Distribution
257(1)
5.3.14 Wavelets
257(4)
5.3.15 Vibration Modal Analysis
261(5)
5.3.16 AVSs: Random Decrement
266(1)
5.3.17 Kalman Filter State Estimation
267(3)
5.4 Image Processing
270(4)
References
274(7)
6 Data Interpretation
281(100)
6.1 Introduction
281(1)
6.2 Standardization of Measurement Uncertainty
282(3)
6.3 Exploratory Data Analysis
285(2)
6.4 Bayes' Theorem
287(2)
6.5 Hypothesis Testing and Two-Way Classification
289(7)
6.6 Logarithmic Measures and Information Theory
296(3)
6.7 Multichannel and Heterogeneous Data Sets
299(2)
6.8 Principal Components Analysis
301(3)
6.9 Independent Component Analysis
304(1)
6.10 Fuzzy Interpretations
305(3)
6.11 Data and Sensor Fusion
308(6)
6.12 Statistical Pattern Recognition and Data Mining
314(4)
6.13 Data-Driven Signal Processing
318(8)
6.13.1 Neural Networks
319(4)
6.13.2 Support Vector Machines
323(1)
6.13.3 Genetic Algorithms
323(3)
6.13.4 Cellular Automata, Agents, and Particle Swarms
326(1)
6.14 Decision-Making, Trees, and Networks
326(3)
6.15 Displacement Estimation and Static Analysis
329(2)
6.16 Vibration and Modal Analysis Techniques
331(28)
6.16.1 Assessment with Methods Based on Linear Vibration
333(1)
6.16.1.1 Frequency Domain Methods
334(3)
6.16.1.2 Time Domain Methods
337(1)
6.16.1.3 Mode Shape Methods
337(6)
6.16.1.4 Pattern Recognition Methods
343(3)
6.16.2 Nonlinear Systems Approaches
346(1)
6.16.2.1 Harmonic Analysis Approaches
347(1)
6.16.2.2 Volterra Series
348(1)
6.16.2.3 Attractors, Chaos, and Phase Space Methods
349(8)
6.16.2.4 Probability Density and Information-Based Methods
357(2)
References
359(22)
7 Adaptive and Automated Sensing
381(34)
7.1 Data-Adaptive Data Processing
384(1)
7.2 Data-Adaptive Data Acquisition
384(5)
7.2.1 Triggering, Input Buffering, and Autoranging
384(1)
7.2.2 Data-Adaptive Scheduling and Reporting
385(1)
7.2.3 Self-Assembling Sensor Networks
385(1)
7.2.4 Squinting and Zooming
386(1)
7.2.5 Active Sensing Systems
387(2)
7.3 Mobile Sensor Systems
389(13)
7.3.1 Deployable Sensors
389(2)
7.3.2 Handheld Systems
391(1)
7.3.3 Endoscopes
391(1)
7.3.4 Inspection Vehicles
392(1)
7.3.5 Automated Scanning Systems
392(2)
7.3.6 Sensing and Inspection Robots
394(8)
7.4 Adaptive Sensor Location and Inspection Timing Strategies
402(3)
7.5 General Principles
405(3)
References
408(7)
8 Health Monitoring and Prognosis
415(66)
8.1 Health Monitoring as a Concept
415(2)
8.2 Visual Inspections
417(2)
8.3 Condition Assessment
419(2)
8.4 Damage Indices
421(4)
8.5 Load Testing
425(3)
8.6 Load Rating of Structures
428(1)
8.7 Load, Fatigue, and Real-Time Monitoring
429(1)
8.8 Root Cause Analysis and Normal Accident Theory
430(14)
8.8.1 Root Cause Analysis
430(3)
8.8.2 Normal Accident Theory
433(6)
8.8.3 High-Profile Accidents
439(1)
8.8.3.1 Space Shuttle Challenger
439(2)
8.8.3.2 Space Shuttle Columbia
441(2)
8.8.3.3 Original Tacoma Narrows Bridge
443(1)
8.9 Failure Prognosis
444(22)
8.9.1 Probabilistic and Age-Based Methods of Prognosis
447(10)
8.9.2 Damage Accumulation Models
457(5)
8.9.3 Condition-Based Models
462(4)
8.10 Corrosion and Chemical Damage
466(1)
8.11 Long-Term Monitoring
467(1)
8.12 Postevent Assessment
467(1)
References
467(14)
9 Structural Performance Assessment
481(22)
9.1 Geometric Configuration
481(1)
9.2 Construction Sensing Systems
482(2)
9.3 Operational Load Performance Assessment
484(8)
9.3.1 Acoustics
485(1)
9.3.2 Corrosion and Chemical Attack
485(1)
9.3.3 Moisture
486(1)
9.3.4 Floor Vibrations
487(2)
9.3.5 Bridges and Roadways
489(1)
9.3.6 Railroads
490(1)
9.3.7 Wind
490(2)
9.4 Extreme Event Performance
492(3)
9.5 Fatigue Performance
495(1)
9.6 Special and Monumental Structures
495(1)
References
496(7)
10 Sensor and Health Monitoring System Design
503(34)
10.1 Design Procedures
503(11)
10.1.1 Task Definition
504(3)
10.1.2 Concept Design
507(1)
10.1.3 Embodiment Design
508(6)
10.2 Detail Design
514(1)
10.3 Optimization Techniques and Sensor Placement Strategies
515(3)
10.4 Design for Inspection
518(1)
10.5 Experimental Design
519(1)
10.6 Extreme-Events: Wind, Blast, Flood, and Earthquake
519(1)
10.7 Real-Time Systems
520(1)
10.8 Biomimetic and Ecomimetic Design
520(3)
10.9 Benchmarking of Designs
523(2)
10.10 Sensor Diagnostics
525(1)
10.11 New Structural Systems
525(1)
References
526(11)
11 Case Studies
537(30)
11.1 Shoring Load Measurements
537(7)
11.2 Cure Monitoring of Composite Laminates Used in the Manufacture of Snowboards
544(6)
11.3 Building Vibration Measurements
550(6)
11.4 Frequency Shifting of a Highly Compressed Beam
556(9)
References
565(2)
Appendix A Waves
567(46)
A.1 Acoustic Waves
567(1)
A.2 Electromagnetic Waves
568(2)
A.3 Elastic Waves
570(2)
A.4 1-D and Scalar Waves
572(17)
A.4.1 Interference and Interferometers
583(2)
A.4.2 Diffraction
585(4)
A.5 Vector Waves
589(4)
A.6 Guided Waves
593(5)
A.7 Scattering
598(3)
A.8 Synthetic Methods
601(8)
References
609(4)
Appendix B Abbreviations and Acronyms
613(6)
Index 619