Atjaunināt sīkdatņu piekrišanu

E-grāmata: Structural and Stress Analysis

4.38/5 (17 ratings by Goodreads)
(Professor Emeritus, Department of Civil Engineering, Leeds University, UK (deceased))
  • Formāts: EPUB+DRM
  • Izdošanas datums: 14-Feb-2014
  • Izdevniecība: Butterworth-Heinemann Ltd
  • Valoda: eng
  • ISBN-13: 9780080999371
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 56,53 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Izdošanas datums: 14-Feb-2014
  • Izdevniecība: Butterworth-Heinemann Ltd
  • Valoda: eng
  • ISBN-13: 9780080999371
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The civil engineering textbook analyzes internal force distributions in statically determinate beams, trusses, cables, and arches, and the stresses produced by the bending, shear, and torsion of beams within a structure. The principle of virtual work and various energy methods calculate the displacement of beams and trusses and the effects of temperature gradients in beams while the finite element method establishes the stiffness matrix for each element in a continuum structure. The third edition extends the material on fatigue to the prediction of the fatigue life of a structure in terms of the number of cycles to failure and to crack propagation rates. Annotation ©2014 Ringgold, Inc., Portland, OR (protoview.com)

The third edition of the popular Structural and Stress Analysis provides the reader with a comprehensive introduction to all types of structural and stress analysis. Starting with an explanation of the basic principles of statics, the book proceeds to normal and shear force, and bending moments and torsion. Building on the success of the prior edition, this edition features new material on structural dynamics and fatigue, and additional discussion of Eurocode compliance in design of beams.

With worked examples, practice problems, and extensive illustrations, this book provides an all-in-one resource for students and professionals interested in learning structural analysis.

  • Comprehensive overview of structural and stress analysis
  • Numerous worked examples and end-of-chapter problems
  • Extensively illustrated to help visualize concepts

Papildus informācija

An accessible and comprehensive introduction to structural and stress analysis, complete with worked-out examples and insightful illustrations
Preface to First Edition xiii
Preface to Second Edition xv
Preface to Third Edition xvii
Chapter 1 Introduction 1(16)
1.1 Function of a structure
1(1)
1.2 Loads
2(1)
1.3 Structural systems
2(4)
Beams
2(1)
Trusses
3(1)
Moment frames
3(1)
Arches
3(1)
Cables
4(1)
Shear and core walls
5(1)
Continuum structures
6(1)
1.4 Support systems
6(3)
1.5 Statically determinate and indeterminate structures
9(1)
1.6 Analysis and design
10(1)
1.7 Structural and load idealization
11(1)
1.8 Structural elements
12(1)
1.9 Materials of construction
13(3)
Steel
13(1)
Concrete
14(1)
Timber
14(1)
Masonry
15(1)
Aluminium
15(1)
Cast iron, wrought iron
16(1)
Composite materials
16(1)
1.10 The use of computers
16(1)
Chapter 2 Principles of Statics 17(21)
2.1 Force
17(8)
Parallelogram of forces
19(3)
The resultant of a system of concurrent forces
22(1)
Equilibrant of a system of concurrent forces
23(1)
The resultant of a system of non-concurrent forces
24(1)
2.2 Moment of a force
25(3)
Couples
26(2)
Equivalent force systems
28(1)
2.3 The resultant of a system of parallel forces
28(2)
2.4 Equilibrium of force systems
30(1)
2.5 Calculation of support reactions
31(4)
Problems
35(3)
Chapter 3 Normal Force, Shear Force, Bending Moment and Torsion 38(41)
3.1 Types of load
38(3)
Axial load
38(1)
Shear load
38(1)
Bending moment
39(1)
Torsion
39(2)
3.2 Notation and sign convention
41(1)
3.3 Normal force
42(5)
3.4 Shear force and bending moment
47(14)
3.5 Load, shear force and bending moment relationships
61(7)
3.6 Torsion
68(2)
3.7 Principle of superposition
70(1)
Problems
71(8)
Chapter 4 Analysis of Pin-Jointed Trusses 79(31)
4.1 Types of truss
79(1)
4.2 Assumptions in truss analysis
79(2)
4.3 Idealization of a truss
81(1)
4.4 Statical determinacy
82(4)
4.5 Resistance of a truss to shear force and bending moment
86(2)
4.6 Method of joints
88(3)
4.7 Method of sections
91(2)
4.8 Method of tension coefficients
93(4)
4.9 Graphical method of solution
97(2)
4.10 Compound trusses
99(1)
4.11 Space trusses
100(3)
4.12 A computer-based approach
103(1)
Problems
104(6)
Chapter 5 Cables 110(20)
5.1 Lightweight cables carrying concentrated loads
110(5)
5.2 Heavy cables
115(12)
Governing equation for deflected shape
115(1)
Cable under its own weight
116(3)
Cable subjected to a uniform horizontally distributed load
119(4)
Suspension bridges
123(4)
Problems
127(3)
Chapter 6 Arches 130(16)
6.1 The linear arch
130(2)
6.2 The three-pinned arch
132(6)
Support reactions — supports on same horizontal level
132(3)
Support reactions — supports on different levels
135(3)
6.3 A three-pinned parabolic arch carrying a uniform horizontally distributed load
138(2)
6.4 Bending moment diagram for a three-pinned arch
140(2)
Problems
142(4)
Chapter 7 Stress and Strain 146(38)
7.1 Direct stress in tension and compression
146(2)
7.2 Shear stress in shear and torsion
148(1)
7.3 Complementary shear stress
149(1)
7.4 Direct strain
150(1)
7.5 Shear strain
150(1)
7.6 Volumetric strain due to hydrostatic pressure
151(1)
7.7 Stress—strain relationships
152(2)
Hooke's law and Young's modulus
152(1)
Shear modulus
152(1)
Volume or bulk modulus
152(2)
7.8 Poisson effect
154(2)
7.9 Relationships between the elastic constants
156(4)
7.10 Strain energy in simple tension or compression
160(15)
Deflection of a simple truss
164(2)
Composite structural members
166(2)
Thermal effects
168(4)
Initial stresses and prestressing
172(3)
7.11 Plane stress
175(4)
7.12 Plane strain
179(1)
Problems
179(5)
Chapter 8 Properties of Engineering Materials 184(25)
8.1 Classification of engineering materials
184(1)
Ductility
184(1)
Brittleness
184(1)
Elastic materials
184(1)
Plasticity
185(1)
Isotropic materials
185(1)
Anisotropic materials
185(1)
Orthotropic materials
185(1)
8.2 Testing of engineering materials
185(5)
Tensile tests
185(1)
Compression tests
186(1)
Bending tests
186(2)
Shear tests
188(1)
Hardness tests
188(1)
Impact tests
189(1)
8.3 Stress—strain curves
190(5)
Low carbon steel (mild steel)
190(2)
Aluminium
192(1)
Brittle materials
193(1)
Composites
194(1)
8.4 Strain hardening
195(1)
8.5 Creep and relaxation
195(1)
8.6 Fatigue
195(10)
Crack propagation
200(5)
8.7 Design methods
205(1)
8.8 Material properties
206(1)
Problems
207(2)
Chapter 9 Bending of Beams 209(44)
9.1 Symmetrical bending
210(10)
Assumptions
211(1)
Direct stress distribution
211(3)
Elastic section modulus
214(6)
9.2 Combined bending and axial load
220(6)
Core of a rectangular section
223(1)
Core of a circular section
224(2)
9.3 Anticlastic bending
226(1)
9.4 Strain energy in bending
226(1)
9.5 Unsymmetrical bending
227(4)
Assumptions
227(1)
Sign conventions and notation
227(2)
Direct stress distribution
229(2)
Position of the neutral axis
231(1)
9.6 Calculation of section properties
231(11)
Parallel axes theorem
231(1)
Theorem of perpendicular axes
232(1)
Second moments of area of standard sections
232(2)
Product second moment of area
234(3)
Approximations for thin-walled sections
237(2)
Second moments of area of inclined and curved thin-walled sections
239(3)
9.7 Principal axes and principal second moments of area
242(2)
9.8 Effect of shear forces on the theory of bending
244(1)
9.9 Load, shear force and bending moment relationships, general case
245(1)
Problems
245(8)
Chapter 10 Shear of Beams 253(34)
10.1 Shear stress distribution in a beam of unsymmetrical section
253(2)
10.2 Shear stress distribution in symmetrical sections
255(9)
10.3 Strain energy due to shear
264(1)
10.4 Shear stress distribution in thin-walled open section beams
265(5)
Shear centre
268(2)
10.5 Shear stress distribution in thin-walled closed section beams
270(9)
Shear centre
274(5)
Problems
279(8)
Chapter 11 Torsion of Beams 287(26)
11.1 Torsion of solid and hollow circular section bars
287(9)
Torsion of a circular section hollow bar
290(3)
Statically indeterminate circular section bars under torsion
293(3)
11.2 Strain energy due to torsion
296(1)
11.3 Plastic torsion of circular section bars
297(3)
11.4 Torsion of a thin-walled closed section beam
300(3)
11.5 Torsion of solid section beams
303(4)
11.6 Warping of cross sections under torsion
307(1)
Problems
307(6)
Chapter 12 Composite Beams 313(24)
12.1 Steel-reinforced timber beams
313(5)
12.2 Reinforced concrete beams
318(14)
Elastic theory
318(7)
Ultimate load theory
325(7)
12.3 Steel and concrete beams
332(3)
Problems
335(2)
Chapter 13 Deflection of Beams 337(52)
13.1 Differential equation of symmetrical bending
337(13)
13.2 Singularity functions
350(7)
13.3 Moment-area method for symmetrical bending
357(8)
13.4 Deflections due to unsymmetrical bending
365(4)
13.5 Deflection due to shear
369(3)
13.6 Statically indeterminate beams
372(9)
Method of superposition
373(2)
Built-in or fixed-end beams
375(5)
Fixed beam with a sinking support
380(1)
Problems
381(8)
Chapter 14 Complex Stress and Strain 389(44)
14.1 Representation of stress at a point
389(1)
14.2 Determination of stresses on inclined planes
390(6)
Biaxial stress system
391(3)
General two-dimensional case
394(2)
14.3 Principal stresses
396(4)
14.4 Mohr's circle of stress
400(3)
14.5 Stress trajectories
403(1)
14.6 Determination of strains on inclined planes
403(2)
14.7 Principal strains
405(2)
14.8 Mohr's circle of strain
407(2)
14.9 Experimental measurement of surface strains and stresses
409(6)
14.10 Theories of elastic failure
415(11)
Ductile materials
416(8)
Brittle materials
424(2)
Problems
426(7)
Chapter 15 Virtual Work and Energy Methods 433(56)
15.1 Work
433(2)
15.2 Principle of virtual work
435(23)
Principle of virtual work for a particle
435(1)
Principle of virtual work for a rigid body
436(6)
Virtual work in a deformable body
442(1)
Work done by internal force systems
442(5)
Virtual work due to external force systems
447(1)
Use of virtual force systems
448(1)
Applications of the principle of virtual work
448(10)
15.3 Energy methods
458(18)
Strain energy and complementary energy
458(3)
The principle of the stationary value of the total complementary energy
461(9)
Temperature effects
470(2)
Potential energy
472(1)
The principle of the stationary value of the total potential energy
473(3)
15.4 Reciprocal theorems
476(5)
Theorem of reciprocal displacements
476(4)
Theorem of reciprocal work
480(1)
Problems
481(8)
Chapter 16 Analysis of Statically Indeterminate Structures 489(82)
16.1 Flexibility and stiffness methods
489(2)
16.2 Degree of statical indeterminacy
491(5)
Rings
491(1)
The entire structure
492(1)
The completely stiff structure
493(1)
Degree of statical indeterminacy
494(1)
Trusses
495(1)
16.3 Kinematic indeterminacy
496(3)
16.4 Statically indeterminate beams
499(7)
16.5 Statically indeterminate trusses
506(8)
Self-straining trusses
511(3)
16.6 Braced beams
514(3)
16.7 Portal frames
517(3)
16.8 Two-pinned arches
520(7)
Secant assumption
523(3)
Tied arches
526(1)
Segmental arches
526(1)
16.9 Slope—deflection method
527(7)
16.10 Moment distribution
534(12)
Principle
534(1)
Fixed-end moments
535(1)
Stiffness coefficient
535(2)
Distribution factor
537(1)
Stiffness coefficients and carry over factors
537(3)
Continuous beams
540(6)
16.11 Portal frames
546(10)
Problems
556(15)
Chapter 17 Matrix Methods of Analysis 571(40)
17.1 Axially loaded members
572(9)
17.2 Stiffness matrix for a uniform beam
581(7)
17.3 Finite element method for continuum structures
588(16)
Stiffness matrix for a beam-element
589(4)
Stiffness matrix for a triangular finite element
593(6)
Stiffness matrix for a quadrilateral element
599(5)
Problems
604(7)
Chapter 18 Plastic Analysis of Beams and Frames 611(35)
18.1 Theorems of plastic analysis
611(1)
The uniqueness theorem
611(1)
The lower bound, or safe, theorem
611(1)
The upper bound, or unsafe, theorem
612(1)
18.2 Plastic analysis of beams
612(19)
Plastic bending of beams having a singly symmetrical cross section
612(3)
Shape factor
615(3)
Moment—curvature relationships
618(3)
Plastic hinges
621(1)
Plastic analysis of beams
622(7)
Plastic design of beams
629(1)
Effect of axial load on plastic moment
629(2)
18.3 Plastic analysis of frames
631(8)
Problems
639(7)
Chapter 19 Yield Line Analysis of Slabs 646(17)
19.1 Yield line theory
646(12)
Yield lines
646(1)
Ultimate moment along a yield line
647(1)
Internal virtual work due to an ultimate moment
648(1)
Virtual work due to an applied load
649(9)
19.2 Discussion
658(1)
Problems
658(5)
Chapter 20 Influence Lines 663(43)
20.1 Influence lines for beams in contact with the load
663(6)
RA influence line
663(1)
RB influence line
664(1)
SK influence line
665(1)
MK influence line
666(3)
20.2 Mueller-Breslau principle
669(3)
20.3 Systems of travelling loads
672(15)
Concentrated loads
672(6)
Distributed loads
678(3)
Diagram of maximum shear force
681(1)
Reversal of shear force
682(2)
Determination of the point of maximum bending moment in a beam
684(3)
20.4 Influence lines for beams not in contact with the load
687(2)
Maximum values of SK and MK
689(1)
20.5 Forces in the members of a truss
689(5)
Counterbracing
693(1)
20.6 Influence lines for continuous beams
694(5)
Problems
699(7)
Chapter 21 Structural Instability 706(31)
21.1 Euler theory for slender columns
706(9)
Buckling load for a pin-ended column
707(1)
Buckling load for a column with fixed ends
708(2)
Buckling load for a column with one end fixed and one end free
710(2)
Buckling of a column with one end fixed and the other pinned
712(3)
21.2 Limitations of the Euler theory
715(1)
21.3 Failure of columns of any length
716(6)
Rankine theory
716(2)
Initially curved column
718(4)
21.4 Effect of cross section on the buckling of columns
722(1)
21.5 Stability of beams under transverse and axial loads
723(5)
21.6 Energy method for the calculation of buckling loads in columns (Rayleigh—Ritz Method)
728(3)
Problems
731(6)
Appendix A: Table of Section Properties 737(2)
Appendix B: Bending of Beams: Standard Cases 739(2)
Index 741
T.H.G. Megson was a professor emeritus with the Department of Civil Engineering at Leeds University (UK). For Elsevier he wrote the market leading Butterworth Heinemann textbooks Aircraft Structures for Engineering Students and Introduction to Aircraft Structural Analysis (a briefer derivative of the aircraft structures book), as well as the text/ref hybrid Structural and Stress Analysis.