Atjaunināt sīkdatņu piekrišanu

E-grāmata: Structural, Syntactic, and Statistical Pattern Recognition: Joint IAPR International Workshops, S+SSPR 2024, Venice, Italy, September 9-10, 2024, Revised Selected Papers

Edited by , Edited by , Edited by , Edited by
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 15444
  • Izdošanas datums: 30-Jan-2025
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031805073
  • Formāts - EPUB+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 15444
  • Izdošanas datums: 30-Jan-2025
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031805073

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book constitutes the proceedings of the Joint IAPR International Workshops on Structural, Syntactic, and Statistical Pattern Recognition, S+SSPR 2024, which took place in Venice, Italy, during September 9-11, 2024.





The 19 full papers presented in this volume were carefully reviewed and selected from 27 submissions. The proceedings focus on pattern recognition, including classification and clustering, deep learning, structural matching and graph-theoretic methods, and multimedia analysis and understanding.
.- A Differentiable Approximation of the Graph Edit Distance.

.- Learning Graph Similarity by Counting Holes in Simplicial Complexes.

.- Community-Hop: Enhancing Node Classification through Community
Preference.

.- Spatio-Temporal Graph Neural Networks for Water Temperature Modeling.

.- Enhancing IoT Network Security with Graph Neural Networks for Node Anomaly
Detection.

.- LSTM Networks and Graph Neural Networks for Predicting Events of
Hypoglycemia.

.- Evaluation metrics in Saliency Maps applied to Graph Regression.

.- LESI-GNN: an Interpretable Graph Neural Network based on Local Structures
Embedding.

.- Mixture of Variational Graph Autoencoders.

.- Multimodality Calibration in 3D Multi Input-Multi Output Network for
Dementia Diagnosis with Incomplete Acquisitions.

.- Multi-modal Medical Images Classification Using Meta-learning Algorithms.

.- From semantic segmentation of natural images to medical image segmentation
using ViT-based architectures.

.- Chronic Wound Segmentation and Measurement Using Semi-Supervised
Hierarchical Convolutional Neural Networks.

.- ZIRACLE: Zero-shot composed Image Retrieval with Advanced Component-Level
Emphasis.

.- Improving Object Detector Performance on Low-Quality Images using
Histogram Matching and Model Stacking.

.- Comparing Learning Methods to Enhance Decision-Making in Simulated
Curling.

.- An empirical characterization of the stability of Isolation Forest
results.

.- Automated Classification of Android Games using Word Embeddings.

.- An interesting property of Random Forest distances with respect to the
curse of dimensionality.