Atjaunināt sīkdatņu piekrišanu

E-grāmata: Structural, Syntactic, and Statistical Pattern Recognition: Joint IAPR International Workshop, SSPR & SPR 2012, Hiroshima, Japan, November 7-9, 2012, Proceedings

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts - PDF+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This volume constitutes the refereed proceedings of the Joint IAPR International Workshops on Structural and Syntactic Pattern Recognition (SSPR 2012) and Statistical Techniques in Pattern Recognition (SPR 2012), held in Hiroshima, Japan, in November 2012 as a satellite event of the 21st International Conference on Pattern Recognition, ICPR 2012. The 80 revised full papers presented together with 1 invited paper and the Pierre Devijver award lecture were carefully reviewed and selected from more than 120 initial submissions. The papers are organized in topical sections on structural, syntactical, and statistical pattern recognition, graph and tree methods, randomized methods and image analysis, kernel methods in structural and syntactical pattern recognition, applications of structural and syntactical pattern recognition, clustering, learning, kernel methods in statistical pattern recognition, kernel methods in statistical pattern recognition, as well as applications of structural, syntactical, and statistical methods.
Estimation, Learning, and Adaptation: Systems That Improve with Use.-
Optimization Techniques for Geometric Estimation: Beyond Minimization.-
Hierarchical Compositional Representations of Object Structure.- Information
Theoretic Prototype Selection for Unattributed Graphs.- Graph Kernels:
Crossing Information from Different Patterns Using Graph Edit Distance.- Mode
Seeking Clustering by KNN and Mean Shift Evaluated.- Learning Sparse Kernel
Classifiers in the Primal.- EvolutionaryWeighted Mean Based Framework for
Generalized Median Computation with Application to Strings.- Graph Complexity
from the Jensen-Shannon Divergence.- Complexity of Computing Distances
between Geometric Trees.- Active Graph Matching Based on Pairwise
Probabilities between Nodes.- On the Relation between the Common Labelling
and the Median Graph.- A Hierarchical Image Segmentation Algorithm Based on
an Observation Scale.- A Discrete Scale Space Neighborhood for Robust Deep
Structure Extraction.- On the Correlation of Graph Edit Distance and L1
Distance in the

Attribute Statistics Embedding Space.- Approximate Axial Symmetries from
Continuous Time Quantum Walks.- A Clustering-Based Ensemble Technique for
Shape Decomposition.- Laplacian Eigenimages in Discrete Scale Space.- A
Relational Kernel-Based Framework for Hierarchical Image Understanding.- A
Jensen-Shannon Kernel for Hypergraphs.- Heat Flow-Thermodynamic Depth
Complexity in Directed Networks.- Shape Similarity Based on a Treelet Kernel
with Edition.- 3D Shape Classification Using Commute Time.- Conditional
Random Fields for Land Use/Land Cover Classification and Complex Region
Detection.- Recognition of Long-Term Behaviors by Parsing Sequences of
Short-Term Actions with a Stochastic Regular Grammar.- A Comparison between
Structural and Embedding Methods for Graph Classification.- Improving Fuzzy
Multilevel Graph Embedding through Feature Selection Technique.- Dynamic
Learning of SCRF for Feature Selection and Classification of Hyperspectral
Imagery.- Entropic Selection of Histogram Features for Efficient
Classification.- 2D Shapes Classification Using BLAST.- A New Random Forest
Method for One-Class Classification.- A New Index Based on Sparsity Measures
for Comparing Fuzzy Partitions.- Polichotomies on Imbalanced Domains by
One-per-Class Compensated Reconstruction Rule.- The Dipping Phenomenon.-
Colour Matching Function Learning.- Constrained Log-Likelihood-Based
Semi-supervised Linear Discriminant Analysis.- Out-of-Sample Embedding by
Sparse Representation.- Extended Analyses for an Optimal Kernel in a Class of
Kernels with an Invariant Metric.- Simultaneous Learning of Localized
Multiple Kernels and Classifier with Weighted Regularization.- Change-Point
Detection in Time-Series Data by Relative Density-Ratio Estimation.- Online
Metric Learning Methods Using Soft Margins and Least Squares Formulations.-
Shape Analysis Using the Edge-Based Laplacian.- One-Sided Prototype Selection
on Class Imbalanced Dissimilarity Matrices.- Estimating Surface
Characteristics and Extracting Features from Polarisation.- Extended Fisher
Criterion Based on Auto-correlation Matrix Information.- Poisoning Adaptive
Biometric Systems.- Modified Divergences for Gaussian Densities.- Graph
Database Retrieval Based on Metric-Trees.- Validation of Network
Classifiers.- Alignment and Morphing for the Boundary Curves of Anatomical
Organs.- Unsupervised Clustering of Human Pose Using Spectral Embedding.-
Human Action Recognition in Video by Fusion of Structural and Spatio-temporal
Features.- An Incremental Structured Part Model for Image Classification.-
Top-Down Tracking and Estimating 3D Pose of a Die.- Large Scale Experiments
on Fingerprint Liveness Detection.- Implicit and Explicit Graph Embedding:
Comparison of Both Approaches on Chemoinformatics Applications.- Modeling
Spoken Dialog Systems under the Interactive Pattern Recognition Framework.-
Hierarchical Graph Representation for Symbol Spotting in Graphical Document
Images.- Compact Form of the Pseudoinverse Matrix in the Approximation of a
Star Graph Using the Conductance Electrical Model (CEM).- A Heuristic Based
on the Intrinsic Dimensionality for Reducing the Number of Cyclic DTW
Comparisons in Shape Classification and Retrieval Using AESA.- Support Vector
Machines Training Data Selection Using a Genetic Algorithm.- A Unified View
of Two-Dimensional Principal Component Analyses.- Automatic Dimensionality
Estimation for Manifold Learning through Optimal Feature Selection.- Novel
Gabor-PHOG Features for Object and Scene Image Classification.- Binary Gabor
Statistical Features for Palmprint Template Protection.- Class-Dependent
Dissimilarity Measures for Multiple Instance Learning.- Bidirectional
Language Model for Handwriting Recognition.- Hypergraph Spectra for
Unsupervised Feature Selection.- Feature Selection Using Counting Grids:
Application to Microarray Data.- Infinite Sparse Factor Analysis for Blind
Source Separation in Reverberant Environments.- Sparse Discriminant Analysis
Based on the Bayesian Posterior Probability Obtained by L1 Regression.-
Conditional Variance of Differences: A Robust Similarity Measure for Matching
and Registration.- A Class Centric Feature and Classifier Ensemble Selection
Approach for Music Genre Classification.- A Local Adaptation of the Histogram
Radon Transform Descriptor: An Application to a Shoe Print Dataset.- A
Multiple Classifier System for Classification of Breast Lesions Using Dynamic
and Morphological Features in DCE-MRI.- A Comparative Analysis of Forgery
Detection Algorithms.- Low Training Strength High Capacity Classifiers for
Accurate Ensembles Using Walsh Coefficients.- A Novel Shadow-Assistant Human
Fall Detection Scheme Using a Cascade of SVM Classifiers.- Analysis of
Co-training Algorithm with Very Small Training Sets.- Classification of
High-Dimension PDFs Using the Hungarian

Algorithm.- Face Recognition Using Multilinear Manifold Analysis of Local
Descriptors.- A Genetic Inspired Optimization for ECOC.