Atjaunināt sīkdatņu piekrišanu

E-grāmata: Structure of Compact Groups: A Primer for Students - A Handbook for the Expert

Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 201,18 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
    • De Gruyter E-books
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Dealing with subject matter of compact groups that is frequently cited in fields like algebra, topology, functional analysis, and theoretical physics, this book has been conceived with the dual purpose of providing a text book for upper level graduate courses or seminars, and of serving as a source book for research specialists who need to apply the structure and representation theory of compact groups.

After a gentle introduction to compact groups and their representation theory, the book presents self-contained courses on linear Lie groups, on compact Lie groups, and on locally compact abelian groups. However, the thrust of book points in the direction of the structure theory of infinite dimensional, not necessarily commutative compact groups, unfettered by weight restrictions or dimensional bounds. In the process it utilizes infinite dimensional Lie algebras and the exponential function of arbitrary compact groups.

The first edition of 1998 was well received by reviewers and has been frequently quoted in the areas of instruction and research. For the present new edition the text has been cleaned of typographical flaws and some minor inaccuracies of content; it has been edited and improved in various sections. New material has been added in order to reflect ongoing research. In the process of revising the original edition, the integrity of the original section numbering was carefully respected so that citations of material from the first edition remains perfectly viable to the users of this edition.

Recenzijas

"Thus, the book is informative and carefully written; the exposition is fresh and excellent. It can be useful for students as well as for experts and will meet, as well as the first edition, a wide audience."Victor Gichev in: Zentralblatt MATH 17/2008

Basic Topics and Examples
1(30)
Definitions and Elementary Examples
2(3)
Actions, Subgroups, Quotient Spaces
5(5)
Products of Compact Groups
10(1)
Applications to Abelian Groups
11(6)
Projective Limits
17(5)
Totally Disconnected Compact Groups
22(2)
Some Duality Theory
24(5)
Postscript
29(1)
References for this
Chapter---Additional Reading
30(1)
The Basic Representation Theory of Compact Groups
31(21)
Some Basic Representation Theory for Compact Groups
31(3)
The Haar Integral
34(3)
Consequences of Haar Measure
37(2)
The Main Theorem on Hilbert Modules for Compact Groups
39(12)
Postscript
51(1)
References for this
Chapter---Additional Reading
51(1)
The Ideas of Peter and Weyl
52(39)
Part 1: The Classical Theorem of Peter and Weyl
52(5)
An Excursion into Linear Algebra
57(2)
The G-modules E' E, Hom(E,E) and Hom (E,E)'
59(2)
The Fine Structure of R (G, K)
61(7)
Part 2: The General Theory of G-Modules
68(1)
Vector Valued Integration
68(6)
The First Application: The Averaging Operator
74(4)
Compact Groups Acting on Convex Cones
78(1)
More Module Actions, Convolutions
79(5)
Complexification of Real Representations
84(6)
Postscript
90(1)
References for this
Chapter---Additional Reading
90(1)
Characters
91(20)
Part 1: Characters of Finite Dimensional Representations
91(7)
Part 2: The Structure Theorem of Efin
98(10)
Cyclic Modules
108(1)
Postscript
109(1)
References for this
Chapter---Additional Reading
110(1)
Linear Lie Groups
111(76)
Preliminaries
111(2)
The Exponential Function and the Logarithm
113(12)
Differentiating the Exponential Function in a Banach Algebra
125(6)
Local Groups for the Campbell-Hausdorff Multiplication
131(3)
Subgroups of A--1 and Linear Lie Groups
134(4)
Analytic Groups
138(1)
The Intrinsic Exponential Function of a Linear Lie Group
139(7)
The Adjoint Representation of a Linear Lie Group
146(5)
Subalgebras, Ideals, Lie Subgroups, Normal Lie Subgroups
151(6)
Normalizers, Centralizers, Centers
157(5)
The Commutator Subgroup
162(4)
Forced Continuity of Morphisms between Lie Groups
166(3)
Quotients of Linear Lie Groups
169(4)
The Topological Splitting Theorem for Normal Vector Subgroups
173(11)
Postscript
184(2)
References for this
Chapter---Additional Reading
186(1)
Compact Lie Groups
187(109)
Compact Lie algebras
188(11)
The Commutator Subgroup of a Compact Lie Group
199(5)
The Structure Theorem for Compact Lie Groups
204(4)
Maximal Tori
208(9)
Lee's Theorem: Preliminary Version
217(1)
The Second Structure Theorem for Connected Compact Lie Groups
217(5)
Compact Abelian Lie Groups and Their Linear Actions
222(4)
Action of a Maximal Torus on the Lie Algebra
226(12)
The Weyl Group Revisited
238(10)
The Commutator Subgroup of Connected Compact Lie Groups
248(1)
On the Automorphism Group of a Compact Lie Group
249(24)
Covering Groups of Disconnected Compact Lie Groups
273(2)
Auerbach's Generation Theorem
275(8)
The Topology of Connected Compact Lie Groups
283(10)
Postscript
293(2)
References for this
Chapter---Additional Reading
295(1)
Duality of Abelian Topological Groups
296(73)
The Compact Open Topology and Hom-Groups
297(4)
Local Compactness and Duality of Abelian Topological Groups
301(7)
Basic Functorial Aspects of Duality
308(3)
The Annihilator Mechanism
311(11)
Character Groups of Topological Vector Spaces
322(15)
The Exponential Function
337(8)
Weil's Lemma and Compactly Generated Abelian Groups
345(4)
Reducing Locally Compact Groups to Compact Abelian Groups
349(4)
The Duality Theorem
353(8)
The Identity Component
361(2)
The Weight of Locally Compact Abelian Groups
363(2)
Postscript
365(3)
References for this
Chapter---Additional Reading
368(1)
Compact Abelian Groups
369(78)
Part 1: Aspects of the Algebraic Structure
369(1)
Divisibility, Torsion, Connectivity
369(7)
Compact Abelian Groups as Factor Groups
376(9)
Part 2: Aspects of the Point Set Topological Structure
385(1)
Topological Dimension of Compact Abelian Groups
385(7)
Arc Connectivity
392(4)
Local Connectivity
396(13)
Compact Metric Abelian Groups
409(3)
Part 3: Aspects of Algebraic Topology---Homotopy
412(1)
Free Compact Abelian Groups
412(5)
Homotopy of Compact Abelian Groups
417(6)
Exponential Function and Homotopy
423(1)
The Fine Structure of Free Compact Abelian Groups
424(7)
Part 4: Aspects of Homological Algebra
431(1)
Injective, Projective, and Free Compact Abelian Groups
431(4)
Part 5: Aspects of Algebraic Topology---Cohomology
435(1)
Cohomology of Compact Abelian Groups
435(5)
Part 6: Aspects of Set Theory---Borel Subsets
440(1)
Arc Components and Borel Subsets
440(4)
Postscript
444(2)
References for this
Chapter---Additional Reading
446(1)
The Structure of Compact Groups
447(87)
Part 1: The Fundamental Structure Theorems of Compact Groups
448(1)
Approximating Compact Groups by Compact Lie Groups
448(1)
The Closedness of Commutator Subgroups
449(1)
Semisimple Compact Connected Groups
450(14)
The Levi-Mal'cev Structure Theorem for Compact Groups
464(8)
Maximal Connected Abelian Subgroups
472(5)
The Splitting Structure Theorem
477(1)
Supplementing the Identity Component
478(5)
Part 2: The Structure Theorems for the Exponential Function
483(1)
The Exponential Function of Compact Groups
483(7)
The Dimension of Compact Groups
490(6)
Locally Euclidean Compact Groups Are Compact Lie Groups
496(4)
Part 3: The Connectivity Structure of Compact Groups
500(1)
Arc Connectivity
500(5)
Local Connectivity
505(3)
Compact Groups and Indecomposable Continua
508(2)
Part 4: Some Homological Algebra for Compact Groups
510(1)
The Projective Cover of Connected Compact Groups
510(9)
Part 5: The Automorphism Group of Compact Groups
519(2)
The Iwasawa Theory of Automorphism Groups
521(8)
Simple Compact Groups and the Countable Layer Theorem
529(2)
Postscript
531(2)
References for this
Chapter---Additional Reading
533(1)
Compact Group Actions
534(43)
A Preparation Involving Compact Semigroups
535(1)
Orbits, Orbit Space, and Isotropy
535(4)
Equivariance and Cross Sections
539(5)
The Triviality Theorem
544(10)
Quotient Actions, Totally Disconnected G-Spaces
554(1)
Compact Lie Group Actions on Locally Compact Spaces
555(2)
Triviality Theorem for Compact Group Actions
557(5)
Split Morphisms
562(13)
Postscript
575(1)
References for this
Chapter---Additional Reading
576(1)
The Structure of Free Compact Groups
577(38)
The Category Theoretical Background
577(5)
Splitting the Identity Component
582(1)
The Center of a Free Compact Group
583(9)
The Commutator Subgroup of a Free Compact Group
592(18)
Freeness Versus Projectivity
610(2)
Postscript
612(2)
References for this
Chapter---Additional Reading
614(1)
Cardinal Invariants of Compact Groups
615(20)
Suitable Sets
615(5)
Generating Degree and Density
620(3)
The Cardinal Invariants of Connected Compact Groups
623(3)
Cardinal Invariants in the Absence of Connectivity
626(2)
On the Location of Special Generating Sets
628(5)
Postscript
633(1)
References for this
Chapter---Additional Reading
634(1)
Appendix
1. Abelian Groups
635(53)
Examples
635(4)
Free Abelian Groups
639(7)
Projective Groups
646(1)
Torsion Subgroups
647(1)
Pure Subgroups
648(2)
Free Quotients
650(1)
Divisibility
651(8)
Some Homological Algebra
659(3)
Exact Sequences
662(12)
Whitehead's Problem
674(13)
Postscript
687(1)
References for this
Chapter---Additional Reading
687(1)
Appendix
2. Covering Spaces and Groups
688(19)
Covering Spaces and Simple Connectivity
688(11)
The Group of Covering Transformations
699(1)
Universal Covering Groups
700(2)
Groups Generated by Local Groups
702(4)
Postscript
706(1)
References for this
Chapter---Additional Reading
706(1)
Appendix
3. A Primer of Category Theory
707(74)
Categories, Morphisms
707(8)
Pointed Categories
715(1)
Types of Morphisms
716(8)
Functors
724(11)
Natural Transformations
735(4)
Equivalence of Categories
739(1)
Limits
740(4)
Continuity of Adjoints
744(1)
The Left Adjoint Existence Theorem
744(5)
Commutative Monoidal Categories and its Monoid Objects
749(1)
Part 1: The Quintessential Diagram Chase
749(10)
Part 2: Connected Graded Commutative Hopf Algebras
759(16)
Part 3: Duality of Graded Hopf Algebras
775(2)
Part 4: An Application to Compact Monoids
777(2)
Postscript
779(1)
References for this
Chapter---Additional Reading
780(1)
Appendix
4. Selected Results on Topology and Topological Groups
781(24)
The Arc Component Topology
781(3)
The Weight of a Topological Space
784(5)
Metrizability of Topological Groups
789(8)
Duality of Vector Spaces
797(1)
Subgroups of Topological Groups
798(4)
Postscript
802(1)
References for this
Chapter---Additional Reading
803(2)
References 805(15)
List of Symbols 820(3)
Index 823


Karl H. Hofmann, TU Darmstadt, Germany; Sidney A. Morris, University of Ballarat, Australien.