Atjaunināt sīkdatņu piekrišanu

E-grāmata: Structure And Evolution Of Stars, The

(Univ Of Cambridge, Uk), (The Univ Of Auckland, New Zealand)
  • Formāts: 360 pages
  • Izdošanas datums: 06-Dec-2018
  • Izdevniecība: Imperial College Press
  • Valoda: eng
  • ISBN-13: 9781783265824
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 36,07 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 360 pages
  • Izdošanas datums: 06-Dec-2018
  • Izdevniecība: Imperial College Press
  • Valoda: eng
  • ISBN-13: 9781783265824
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Stars are the fundamental observable constituents of the Universe. They are the first objects we see in the night sky, dominate the light produced in our own and other galaxies and nucleosynthesis in stars produces all the elements heavier than helium. A knowledge of stars and their evolution is vital in understanding other astrophysical objects from accreting black holes and galaxies to the Universe itself.The structure of a star can be described mathematically by differential equations which can be derived from the principles of hydrodynamics, electromagnetic theory, thermodynamics, quantum mechanics, and atomic and nuclear physics. The basic equations of a spherical star are derived in detail, the modes of energy transport, the equation of state, the physics of the opacity sources and the nuclear reactions are explained. Approximate solutions of the equations for stellar structure are given. Attention is given to the virial theorem, polytropic gas spheres and homology principles. The procedure for numerical solution of the equations is outlined.The evolution of a star is described from its main sequence evolution through the exhaustion of various nuclear fuels to the end points of evolution such as white dwarfs, neutron stars and black holes. Supernova explosions as the deaths of massive stars along with the nucleosynthesis of elements within stars are explained.
Foreword vii
Preface xi
Acknowledgements xiii
1 Observable Properties of Stars
1(30)
1.1 Modelled Quantities
8(1)
1.2 Time-Scales
9(1)
1.3 Other Stars
10(1)
1.3.1 The naming of stars
11(1)
1.3.2 Apparent and absolute magnitudes
12(2)
1.3.3 Distances
14(3)
1.3.4 Colours
17(2)
1.3.5 Spectral lines
19(3)
1.4 The Hertzsprung-Russel Diagram
22(5)
1.5 Stellar Masses
27(1)
1.6 Questions
27(4)
2 The Equations of Stellar Structure
31(1)
2.1 Physical Structure
31(3)
2.2 Polytropes
34(5)
2.2.1 Solutions to the Lane-Emden equation
36(1)
2.2.2 Mass
36(2)
2.2.3 Central condensation
38(1)
2.2.4 Mass-radius relation
38(1)
2.3 The Virial Theorem
39(3)
2.3.1 Estimates for stars in equilibrium
42(1)
2.3.2 Net energy
43(1)
2.3.3 Pulsations
44(1)
2.4 Questions
44(3)
3 The Equation of State
47(1)
3.1 Gas Pressure
48(1)
3.2 Mean Molecular Weight
49(1)
3.3 Radiation Pressure
50(4)
3.4 Ratio of Specific Heats and Virial Equilibrium
54(3)
3.5 Importance of Radiation Pressure
57(3)
3.6 Ionisation Equilibria
60(3)
3.6.1 Pressure ionisation
63(1)
3.7 Degeneracy
64(3)
3.7.1 Non-relativistic electrons, p = mev
67(1)
3.7.2 Extremely relativistic electrons, u = c
68(1)
3.8 White Dwarfs and Neutron Stars
69(2)
3.8.1 Warm degenerate matter
71(2)
3.9 Choice of State Variables
73(1)
3.10 Molecular Hydrogen
73(1)
3.11 Coulomb Interactions
74(1)
3.12 The Equation of State for Stellar Models
74(2)
3.13 Questions
76(3)
4 Heat Transport
79(1)
4.1 Thermal Equilibrium
79(1)
4.1.1 Photons
80(1)
4.1.2 Particles
81(1)
4.1.3 Importance of conduction
82(2)
4.1.4 Diffusion of ions
84(1)
4.2 Radiative Transfer
84(6)
4.2.1 Sources of opacity k
90(6)
4.2.2 Combined opacity tables
96(2)
4.3 Conduction
98(1)
4.4 Convection
98(1)
4.4.1 Stability
99(5)
4.4.2 Convective energy transport
104(3)
4.4.3 The temperature gradient
107(2)
4.4.4 Other points of interest for convection
109(1)
4.4.5 Refinements to MLT
110(1)
4.4.6 Convective overshooting
111(1)
4.4.7 Semi-convection
111(2)
4.4.8 The Ledoux criterion
113(3)
4.5 Thermohaline Mixing
116(2)
4.6 Questions
118(3)
5 Stellar Atmospheres
121(1)
5.1 Specific Intensity
121(1)
5.2 Absorption
122(1)
5.3 Emission Coefficient
123(2)
5.3.1 Detailed balance and stimulated emission
123(2)
5.4 Equation of Transfer
125(1)
5.5 Scattering
126(1)
5.6 Surface Boundary Condition
127(1)
5.6.1 Plane-parallel atmosphere
128(4)
5.7 Second Surface Boundary Condition
132(2)
5.8 Breakdown of Assumptions
134(1)
5.9 Line Formation
135(3)
5.10 Questions
138(3)
6 Energy Generation
141(3)
6.1 Gravitational Contraction
144(3)
6.2 Nuclear Energy Generation
147(2)
6.2.1 Hydrogen burning
149(6)
6.2.2 Helium burning: The triple-a reaction
155(2)
6.2.3 Advanced burning stages
157(1)
6.3 Nuclear Reaction Rates
158(2)
6.3.1 The Coulomb barrier
160(2)
6.3.2 Barrier energy
162(3)
6.3.3 Cross-section factor
165(4)
6.3.4 Gamow energy
169(3)
6.3.5 Resonant reactions
172(2)
6.3.6 Thermostatic control
174(1)
6.3.7 Electron screening
174(1)
6.4 Reaction Equilibria
175(4)
6.4.1 Nuclear statistical equilibrium
176(3)
6.5 The Origin of the Elements
179(5)
6.6 Neutrino Losses
184(2)
6.7 Questions
186(5)
7 Stellar Models
191(1)
7.1 Time Dependence and Stellar Evolution
194(2)
7.2 Methods of Solution
196(5)
7.2.1 Shooting
197(1)
7.2.2 Relaxation
198(3)
7.3 Homology
201(2)
7.3.1 Zero-age solar-like stars
203(3)
7.3.2 Higher masses
206(1)
7.3.3 Stellar lifetimes
207(1)
7.3.4 Fully convective stars
207(3)
7.3.5 Red giants
210(1)
7.4 Homologous Evolution
211(2)
7.5 Questions
213(6)
8 Stellar Evolution
219(1)
8.1 Stellar Evolution Models
219(3)
8.1.1 Convective overshooting
221(1)
8.2 The Evolution of a 5M0 Star
222(9)
8.3 Thermal Pulses
231(5)
8.3.1 Carbon stars
236(2)
8.3.2 Quantitative problems
238(1)
8.4 The Evolution of a 1 M Star
239(5)
8.5 The Evolution of a 7 M Star
244(2)
8.6 The Evolution of Stars More Massive Than 8 M
246(4)
8.7 Further Complications and Uncertainties
250(1)
8.7.1 Initial metallicity
251(1)
8.7.2 Mass loss and stellar winds
252(4)
8.7.3 Stellar rotation
256(2)
8.8 Naked Helium Stars, White Dwarfs and Wolf-Rayet Stars
258(3)
8.9 The Deaths of Massive Stars
261(2)
8.9.1 Core collapse
262(1)
8.10 Supernova Spectra and Light Curves
263(2)
8.11 Evolution Summary
265(1)
8.12 Questions
266(5)
9 Binary Stars
271(1)
9.1 Numbers
272(2)
9.2 Observed Binary Stars
274(1)
9.3 Orbits
275(6)
9.3.1 Newton's laws
277(1)
9.3.2 Angular momentum of the orbit
278(1)
9.3.3 Energy
279(1)
9.3.4 The Laplace-Runge-Lenz vector
279(1)
9.3.5 Orbital energy and Kepler's third law
280(1)
9.4 Orbital Elements
281(1)
9.4.1 Visual binary stars
281(1)
9.4.2 Spectroscopic binary stars
282(1)
9.4.3 Eclipsing binary stars
283(2)
9.5 Tides
285(1)
9.6 Tidal Equilibrium
286(1)
9.6.1 Circularisation
286(1)
9.6.2 Synchronization
286(2)
9.6.3 The tidal mechanism
288(4)
9.6.4 Time-scales
292(2)
9.7 Mass Transfer
294(5)
9.7.1 Mass transfer rate
299(3)
9.7.2 The stream
302(1)
9.7.3 Stability of mass transfer
302(2)
9.8 Period Evolution of Binary Stars
304(2)
9.9 The Zoo of Binary Stars
306(1)
9.9.1 Algols
307(5)
9.9.2 Cataclysmic variables
312(3)
9.9.3 Common envelope evolution
315(2)
9.9.4 Type la supernovae
317(2)
9.9.5 Massive stars, neutron stars and black holes
319(2)
9.10 Questions
321(4)
Bibliography 325(8)
Index 333